Skip to main content

Content and Context in Temporal Thalamocortical Binding

  • Conference paper
Temporal Coding in the Brain

Part of the book series: Research and Perspectives in Neurosciences ((NEUROSCIENCE))

Abstract

Given that sensory systems generate but a fractured representation of universals, the issue of perceptual unity has been approached by defining the mechanisms by which different sensory components are gathered into one global image. In recent years, this has been described as “binding,” and has been thought to be implemented by temporal conjunction (Bienenstock and von der Malsburg 1986, von der Malsburg 1981; Crick and Koch 1990; Llinás 1990).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bienenstock E, Von der Malsburg C (1986) Statistical coding and short-term synaptic plasticity: a scheme for knowledge representation in the brain. In: Bienenstock E, Fogelman F, Weisbuch G (eds) Discordered systems and biological organization. pp 247–272. Les Houches: Springer-Verlag

    Google Scholar 

  • Bressler SL, Freeman WJ (1980) Frequency analysis of olfactory system EEG in cat, rabbit and rat. Electroencephalogr Clin Neurophysiol 50:19–24

    Article  PubMed  CAS  Google Scholar 

  • Cajal SR (1929) Etude sur la neurogánese de quelques vertábrás. Thomas, Springfield

    Google Scholar 

  • Castaigne P, Buge A, Escourolle R, Masson M (1962) Ramollissement pádonuclaire mádian, tegmento-thalamique avec ophtalmoplágie et hypersomnie. Rev Neurol 106:357–367

    Google Scholar 

  • Connor JA, Walter D, McKown R (1977) Neural repetitive firing: modifications of the Hodgkin-Huxley axon suggested by experimental results from crustacean axons. BiophysJ 18:81–102

    Article  CAS  Google Scholar 

  • Crick F, Koch C (1990) Some reflections on visual awareness. Cold Spring Harbor Symp Quant Biol 55:953–962

    PubMed  CAS  Google Scholar 

  • Deschênes M, Hu B (1990) Electrophysiology and pharmacology of the eorticothalamic input to lateral thalamic nuclei: an intracellular study in the cat. Eur J Neurosi 2:140–152

    Article  Google Scholar 

  • Deschênes M, Madariage-Domich A, Steriade M (1985) Dendrodendritic synapses in the cat reticularis thalami nucleus: A structural basis for thalamic spindle synchronization. Brain Res 334:165–168

    Article  PubMed  Google Scholar 

  • Eckhorn R, Bauer R, Jordan W, Brosch M, Kruse W, Munk M, Reitbock HJ (1988) Coherent oscillations: A mechanism of feature linking in the visual cortex? Biol Cybernet 60:121–130

    Article  CAS  Google Scholar 

  • Edelman GM (1987) Neuronal darwinism: The theory of neuronal group selection. Basic Books, New York

    Google Scholar 

  • Façon E, Steriade M, Wertheim N (1958) Hypersomnie prolongáe engendráe par des lásions bilatárales due systèm activateur mádial le syndrome thrombotique de la biffurcation du tronc basilaire. Rev Neurol 98:117–133

    PubMed  Google Scholar 

  • Galambos R, Makeig S, Talmachoff PJ (1981) A 40-Hz auditory potential recorded from the human scalp. Proc Natl Acad Sci (USA) 78:2643–2647

    Article  CAS  Google Scholar 

  • Ghose GM, Freeman RD (1992) Oscillatory discharge in the visual system: Does it have a functional role? J Neurophysiol 68:1558–1574

    PubMed  CAS  Google Scholar 

  • Gray CM, Singer W (1989) Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc Natl Acad Sci USA 86:1698:1702

    Google Scholar 

  • Gray CM, Konig P, Engel AK, Singer W (1989) Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338:334–337

    Article  PubMed  CAS  Google Scholar 

  • Harris WA (1987) Neurogenetics. In: Adelman G (ed) Encyclopedia of Neuroscience. Birkhäuser, Basel pp 791–793

    Google Scholar 

  • Heilman KM, Baienstein E (1993) Clinical Neuropsychology, Oxford Univ. Press, New York, Oxford

    Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description to conductance and excitation in nerve. J Physiol (London) 117:500–544

    CAS  Google Scholar 

  • Krieg WJS (1966) Functional neuroanatomy. Brain Books, Pantagraph Printing, Bloomington, Illinois

    Google Scholar 

  • Kristofferson AB (1984) Quantal and deterministic timing in human duration discrimination. Ann NY Acad Sci 423:3–15

    Article  PubMed  CAS  Google Scholar 

  • Lande R (1979) Quantitative genetic analysis of multivariate evolution, applied to brain-body size allometry. Evolution 33:400–416

    Google Scholar 

  • Llinäs R (1987) “Mindness” as a functional state of the brain. In: Blakemore C, Greenfield SA (eds) Mindwaves. Basil Blackwell, Oxford pp 339–358

    Google Scholar 

  • Llinäs R (1990) Intrinsic electrical properties of mammalian neurons and CNS function. In: Fidia Research Foundation Neuroscience Award Lectures. Vol 4, Raven Press, NewYork pp1–10

    Google Scholar 

  • Llinás R, Parè D (1991) Of dreaming and wakefulness. Neuroscience 44:521–535

    Article  PubMed  Google Scholar 

  • Llinás R, Ribary U (1992) Rostrocaudal scan in human brain: a global characteristic of the 40-Hz response during sensory input. In: Basar E, Bullock T (eds) Induced rhythms in the brain. Chapter 7, Birkhäuser: Boston pp 147–154

    Google Scholar 

  • Llinás R, Ribary U (1993 a) Perception as an oneiric-like state modulated by the senses. In: Large-scale neuronal theories of the brain. Boston, MIT Press, in press

    Google Scholar 

  • Llinás R, Ribary U (1993 b) Coherent 40-Hz oscillation characterizes dream state in humans. Proc Natl Acad Sci USA 90:2078–2081

    Article  PubMed  Google Scholar 

  • Llinás R, Sugimori M (1980) Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices. J Physiol (London) 305:171–195

    Google Scholar 

  • Llinás R, Grace AA, Yarom Y (1991) In vitro neurons in mammalian cortical layer 4 exhibit intrinsic activity in the 10 to 50 Hz frequency range. Proc Natl Acad Sci USA 88:897–901

    Article  PubMed  Google Scholar 

  • Mountcastle VB, Hennemann E (1949) Pattern of tactile representation in thalamus of cat. J Neurophysiol 12:85–100

    PubMed  CAS  Google Scholar 

  • Mountcastle VB, Hennemann E (1952) The representation of tactile sensibility in the thalamus of the monkey. J Comp Neurol 97:409–440

    Article  PubMed  CAS  Google Scholar 

  • Pantev C, Makeig S, Hoke M, Galambos R, Hampson S, Gallen C (1991) Human auditory evoked gamma-band magnetic fields. Proc Natl Acad Sci (USA) 88: 8996–9000

    Article  CAS  Google Scholar 

  • Pellionisz A, Llinás R (1982) Space-time representation in the brain. The cerebellum as a predictive space-time metric tensor. Neuroscience 7:2949–2970

    CAS  Google Scholar 

  • Penfield W, Rasmussen T (1950) The cerebral cortex of man. MacMillan, New York

    Google Scholar 

  • Pinault D, Desch ênes M (1992) Voltage-dependent 40-Hz oscillations in rat reticular thalamic neurons in vitro. Neuroscience 51:245–258

    Article  PubMed  CAS  Google Scholar 

  • Ribary U, Ioannides AA, Singh KD, Hasson R, Bolton JPR, Lado F, Mogilner A, Llinás R (1991) Magnetic Field Tomography (MFT) of coherent thalamo-cortical 40-Hz oscillations in humans. Proc Natl Acad Sci USA 88:11037–11041

    Article  PubMed  CAS  Google Scholar 

  • Scharfman HE, Lu S-M, Guido W, Adams PR, Sherman SM (1990) N-Methyl-D-asparate receptors contribute to excitatory postsynaptic potentials of cat lateral geniculate neurons recorded in thalamic sclices. Proc Natl Acad Sci (USA) 87:4548–4552

    Article  CAS  Google Scholar 

  • Singer W (1993) Synchronization of cortical activity and its putative role in information processing and learning. Ann Rev Physiol 55:349–374

    Article  CAS  Google Scholar 

  • Steriade M (1991) In: Peters A, Jones EG (eds) Cerebral cortex. Chapter 9, Plenum, New York pp 279–357

    Google Scholar 

  • Steriade M, Parent A, Hada J (1984) Thalamic projections of reticular nucleus thalami of cat: A study using retrograde transport of horseradish peroxidase and double fluorescent tracers. J Comp Neurol 229:531–547

    Article  PubMed  CAS  Google Scholar 

  • Steriade M, Jones EG, Llinás R (1990) Thalamic oscillations and signalling. John Wiley &Sons, New York

    Google Scholar 

  • Steriade M, CurróDossi R, Pará D, Oakson G (1991) Fast oscillations (20–40 Hz) in thalamocortical systems and their potentiation by mesopontine cholinergic nuclei in the cat. Proc Natl Acad Sci USA 88:4396–4400

    Article  PubMed  CAS  Google Scholar 

  • Steriade M, CurróDossi R, Contreras F (1993) Electrophysiological properties of intra-laminar thalamocortical cells discharging rhythmic (40 Hz) spike-bursts at 1000 Hz during waking and rapid eye movement sleep. Neuroscience 56:1–9

    Article  PubMed  CAS  Google Scholar 

  • Traub R (1977) Repetitive firing of Renshaw spinal interneurons. Biol Cybern 27:71–76

    Article  PubMed  CAS  Google Scholar 

  • Traub R, Wong RKS, Miles R, Michelson H (1991) A model of a CA3 hippocampal neuron incorporating voltage-clamp data on intrinsic conductances. J Neurophy-siol 66:637–650

    Google Scholar 

  • Von der Malsburg C (1981) The correlation theory of brain function. Internal report, Max-Planck Institute for Biophysical Chemistry. Goettingen RFA

    Google Scholar 

  • Wang X-J (1993) Ionic basis for the intrinsic 40-Hz neuronal oscillations. Neuro Report 5:221–224

    CAS  Google Scholar 

  • Wang X-J (1994) Multiple dynamic modes of thalamic relay neurons: rhythmic bursting and intermittent phase-locking. Neuroscience 59:21–31

    Article  PubMed  CAS  Google Scholar 

  • Wang X-J, Rinzel J (1993) Spindle rhythmicity in the reticularis thalami nucleus: synchronization among mutually inhibitory neurons. Neuroscience 53:899–904

    Article  PubMed  CAS  Google Scholar 

  • Wilson JR, Friedlander MJ, Sherman SM (1984) Ultrastructural morphology of identified X-and Y-cells in the cat’s lateral geniculate nucleus. Proc Roy Soc B221: 411–436

    Article  CAS  Google Scholar 

  • Yen CT, Conley M, Hendry SHC, Jones EG (1985) The morphology of physiologically identified GABAergic neurons in the somatic sensory part of the thalamic reticular nucleus in the cat. J Neurosci 5:2254–2268 273-290

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Llinas, R., Ribary, U., Joliot, M., Wang, XJ. (1994). Content and Context in Temporal Thalamocortical Binding. In: Buzsáki, G., Llinás, R., Singer, W., Berthoz, A., Christen, Y. (eds) Temporal Coding in the Brain. Research and Perspectives in Neurosciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-85148-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-85148-3_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-85150-6

  • Online ISBN: 978-3-642-85148-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics