Conformal-Field-Theory Approach to Quantum-Impurity Problems

  • I. Affleck
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 118)


A brief review is given of a new method for studying the critical behavior of quantum impurity problems, based on conformal field theory techniques, which I developed with Andreas Ludwig. Some results on the overscreened Kondo problem are reviewed. It is shown that the simple open and periodic fixed points, which occur in quantum spin chain impurity models, are related to each other by fusion.


Partition Function Spin Chain Conformal Field Theory Fusion Rule Luttinger Liquid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J.L. Cardy, Infinite Lie Algebras and Conformal Invariance in Condensed Matter and Particle Physics (ed. K. Dietz and V. Rittenberg, World Scientific, Singapore, 1987), 81; Nucl. Phys. B324, 581 (1989); D. Lewellen and J.L. Cardy, Phys. Lett. B259, 274 (1991).Google Scholar
  2. [2]
    I. Affleck, Nucl. Phys. B336, 517 (1990).CrossRefADSMathSciNetGoogle Scholar
  3. [3]
    I. Affleck and A.W.W. Ludwig, Nucl. Phys. B352, 849 (1991).CrossRefADSMathSciNetGoogle Scholar
  4. [4]
    I. Affieck and A.W.W. Ludwig, Nucl. Phys. B360, 641 (1991).CrossRefADSGoogle Scholar
  5. [5]
    I. Affieck and A.W.W. Ludwig, Phys. Rev. Lett. 67, 161 (1991).CrossRefADSMathSciNetGoogle Scholar
  6. [6]
    A.W.W. Ludwig and I. Affleck, Phys. Rev. Lett., 67, 3160 (1991).CrossRefMATHADSMathSciNetGoogle Scholar
  7. [7]
    I. Affleck and A.W.W. Ludwig, Phys. Rev. Lett. 68, 1046 (1992).CrossRefADSGoogle Scholar
  8. [8]
    I. Affieck, A.W.W. Ludwig, H.-B. Pang and D.L. Cox, Phys. Rev. B45, 7918 (1992).ADSGoogle Scholar
  9. [9]
    I. Affieck and A.W.W. Ludwig, Phys. Rev. B48, 7297 (1993).ADSGoogle Scholar
  10. [10]
    A.W.W. Ludwig and I.Affleck, in preparation.Google Scholar
  11. [11]
    S. Eggert and I. Affleck, Phys. Rev. B46, 10866 (1992).Google Scholar
  12. [12]
    E. Sorensen, S. Eggert and I. Affleck, preprint, UBCTP-93–07 (cond-mat@babbage.,no. 9306003) to appear in J. Phys. A.Google Scholar
  13. [13]
    I. Affleck and J. Sagi, preprint, UBCTP-93–18 (, no. 9311056).Google Scholar
  14. [14]
    E. Wong and I. Affieck, preprint, UBCTP-93–20 (, no. 931140).Google Scholar
  15. [15]
    P. Nozières, J. Low Temp. Phys. 17, 31 (1974); P. Nozières, Proceedings of the 14`h Int.’1 Conf. on Low Temp. Phys. (ed. M. Krusius and M. Vuorio, North Holland, Amsterdam, 1974) V. 5, p. 339.Google Scholar
  16. [16]
    J. Kondo, Prog. Theor. Phys. 32, 37 (1964).Google Scholar
  17. [17]
    D.L. Cox, Phys. Rev. Lett. 67 2883 (1987); V. J. Emery and S. Kivelson, Phys. Rev. B46, 10812 (1992).Google Scholar
  18. [18]
    N. Ishibashi, Mod. Phys. Lett. A4, 251 (1989); T. Onogi and N. Ishibashi, Nucl. Phys. B318, 239 (1989).Google Scholar
  19. [19]
    I. Affleck, Fields, Strings and Critical Phenomena (ed. E. Brézin and J. Zinn-Justin, North-Holland, Amsterdam), 563 (1990).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • I. Affleck
    • 1
  1. 1.Canadian Institute for Advanced Research and Physics DepartmentUniversity of British ColumbiaVancouverCanada

Personalised recommendations