Skip to main content

Neurotoxic Phenylalkylamines and Indolealkylamines

  • Chapter
Selective Neurotoxicity

Part of the book series: Springer Study Edition ((SSE,volume 102))

  • 98 Accesses

Abstract

The finding that the transport systems, storage mechanisms, and enzymes involved in the biosynthesis/metabolism of catecholamines in sympathetic adrenergic neurons have limited substrate specificity and, therefore, allow chemically related (and even structurally foreign) compounds to accumulate within adrenergic nerves and influence the storage, release, and metabolism of the natural transmitter served as the foundation of the “false transmitter” concept (cf. Thoenen 1969); this concept implies that the false transmitters may be handled within the sympathetic nerves like the natural transmitter, thereby influencing the intraneuronal disposition and release of the natural transmitter. Adrenergic neurotransmission may, in addition, be modified by differences in the affinity/activity of the substitute transmitter to/at pre- and/or postsynaptic binding sites in comparison with the natural transmitter. Working with hydroxylated positional isomers of dopamine such as 3,4,5-trihydroxyphenylethylamine (5-hydroxydopamine, 5-OH-DA) and 2,4,5-trihydroxyphenylethylamine (6-hydroxy dopamine, 6-OH-DA), Tranzer and Thoenen (1967; Thoenen and Tranzer 1968) discovered that 5-OH-DA is handled by sympathetic nerves like norepinephrine (NE) but that it is less potent a releaser for NE and less potent a postsynaptic receptor stimulant than NE, although it shares the same biosynthetic and degradative pathways, thus resulting in weakening of adrenergic transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams RN, Murrill E, McCreery R, Blank L, Karolczak M (1972) 6- Hydroxydopamine, a new oxidation mechanism. Eur J Pharmacol 17:287–292

    PubMed  CAS  Google Scholar 

  • Allis B, Cohen G (1977) The neurotoxicity of 5,7-dihydroxytryptamine in the mouse atrium: protection by l-phenyl-3-(2-thiazolyl)-2-thiourea and by ethanol. Eur J Pharmacol 43:269–272

    PubMed  CAS  Google Scholar 

  • Ames MM, Nelson SD, Lovenberg W, Sasame HA (1977) Metabolic activation of para-chloroamphetamine to a chemically reactive metabolite. Comm Psychopharmacol 1:455–460

    CAS  Google Scholar 

  • Appel NM, Contrera JF, De Souza EB (1989) Fenfluramine selectively and differentially decreases the density of serotonergic nerve terminals in rat brain: evidence from immunocytochemical studies. J Pharmacol Exp Ther 249(3): 928–943

    PubMed  CAS  Google Scholar 

  • Amarego WLF, Waring P (1983) Inhibition of human brain dihydropteridine reductase (EC 1.6.99.10) by the oxidation products of catecholamines, the aminochromes. Biochem Biophys Res Commun 113:895–899

    Google Scholar 

  • Axt KJ, Commins DL, Vosmer G, Seiden LS (1990) α-Methyl-p-tyrosine pretreatment partially prevents methamphetamine-induced endogenous neurotoxin formation. Brain Res 515:269–276

    PubMed  CAS  Google Scholar 

  • Azmitia EC, Murphy RB, Whitaker-Azmitia PM (1990) MDMA (Ecstasy) effects on cultured serotonergic neurons: evidence for Ca2+-dependent toxicity linked to release. Brain Res 510:97–103

    PubMed  CAS  Google Scholar 

  • Barzaghi F, Baumgartner HR, Carruba M, Mantegazza P, Pletscher A (1973) The 5-hydroxytryptamine-like actions of 5,6-dihydroxytryptamine. Br J Pharmacol 48:245–254

    PubMed  CAS  Google Scholar 

  • Battaglia G, Yeh SY, O’Hearn E, Molliver ME, Kuhar MJ, De Souza EB (1987) 3,3- Methylenedioxymethamphetamine and 3,4-methylenedioxyamphetamine destroy serotonin terminals in rat brain: quantification of neurodegeneration by measurement of [3H]paroxetine-labeled serotonin uptake sites. J Pharmacol Exp Ther 242:911–916

    PubMed  CAS  Google Scholar 

  • Battaglia G, Yeh SY, De Souza EB (1988) MDMA-induced neurotoxicity: parameters of degeneration and recovery of brain serotonin neurons. Pharmacol Biochem Behav 29:269–274

    PubMed  CAS  Google Scholar 

  • Baumgarten HG, Björklund A (1976) Neurotoxic indoleamines and monoamine neurons. Annu Rev Pharmacol 16:101–111

    CAS  Google Scholar 

  • Baumgarten HG, Björklund A, Lachenmayer L, Nobin A, Stenevi U (1971) Long- lasting selective depletion of brain serotonin by 5,6-dihydroxytryptamine. Acta Physiol Scand [Suppl]373:1–15

    CAS  Google Scholar 

  • Baumgarten HG, Evetts KD, Holman RB, Iversen LL, Vogt M, Wilson G (1972a) Effects of 5,6-dihydroxytryptamine on monoaminergic neurones in the central nervous system of the rat. J Neurochem 19:1587–1597

    PubMed  CAS  Google Scholar 

  • Baumgarten HG, Göthert M, Schlossberger HG, Tuchinda P (1972b) Mechanism of pressor effect of 5,6-dihydroxytryptamine in pithed rats. Arch Pharmacol 274:375–384

    CAS  Google Scholar 

  • Baumgarten HG, Björklund A, Holstein AF, Nobin A (1972c) Chemical degeneration of indoleamine axons in rat brain by 5,6-dihydroxytryptamine. Z Zellforsch 129:256–271

    PubMed  CAS  Google Scholar 

  • Baumgarten HG, Lachenmayer, L, Bjöklund. A, Nobin A, Rosengren E (1973a) Long-term recovery of serotonin concentrations in the rat CNS following 5,6- dihydroxytryptamine. Life Sci 12:357–364

    CAS  Google Scholar 

  • Baumgarten HG, Björklund A, Lachenmayer L, Nobin A (1973b) Evaluation of the effects of 5,7-dihydroxytryptamine on serotonin and catecholamine neurons in the rat CNS. Acta Physiol Scand [Suppl]391:1–19

    CAS  Google Scholar 

  • Baumgarten HG, Groth HP, Göthert M, Manian AA (1974a) The effect of 5,7- dihydroxytryptamine on peripheral adrenergic nerves in the mouse. Naunyn- Schmiedebergs Arch Pharmacol 282:245–254

    PubMed  CAS  Google Scholar 

  • Baumgarten HG, Björklund A, Horn AS, Schlossberger HG (1974b) Studies on the neurotoxic properties of hydroxylated tryptamines. In: Fuxe K, Olson L, Zotterman Y (eds) Dynamics of degeneration and grówth in neurons. Pergamon, Oxford, pp 153–167

    Google Scholar 

  • Baumgarten HG, Björklund A, Nobin A, Rosengren E, Schlossberger HG (1975a) Neurotoxicity of hydroxylated tryptamines: structure-activity relationships. 1. Long-term effects on monoamine content and fluorescence morphology of central monoamine neurons. Acta Physiol Scand [Suppl]429:1–27

    Google Scholar 

  • Baumgarten HG, Björklund A, Bogdanski DF (1975b) Similarities and differences in the mode of action of 6-hydroxydopamine and neurotoxic indoleamines. In: Jonsson G, Malmfors T, Sachs Ch (eds) 6-Hydroxydopamine as a denervation tool in catecholamine research. North-Holland, Amsterdam, pp 59–66

    Google Scholar 

  • Baumgarten HG, Lachenmayer L, Björklund A (1977) Chemical lesioning of indoleamine pathways. In: Myers RD (ed) Methods in psychobiology, vol III. Academic, London, pp 47–98

    Google Scholar 

  • Baumgarten HG, Klemm HP, Lachenmayer L, Björklund A, Lovenberg W, Schlossberger H (1978) Mode and mechanism of action of neurotoxic indoleamines; a review and progress report. Ann NY Acad Sci 305:3–24

    PubMed  CAS  Google Scholar 

  • Baumgarten HG, Jenner S, Schlossberger HG (1979) Serotonin neurotoxins: effects of drugs on the destruction of brain serotonergic, noradrenergic and dopaminergic axons in the adult rat by intraventricularly, intracisternally or intracerebrally administered 5,7-dihydroxytryptamine and related compounds. In: Chubb IW, Geffen LB (eds) Neurotoxins, fundamental and clinical advances. Adelaide University Union Press, Adelaide, pp 221–226

    Google Scholar 

  • Baumgarten HG, Jenner S, Klemm HP (1981) Serotonin neurotoxins: recent advances in the mode of administration and molecular mechanism of action. J Physiol (Paris) 77:309–314

    CAS  Google Scholar 

  • Baumgarten HG, Jenner S, Björklund A, Klemm HP, Schlossberger HG (1982a) Serotonin neurotoxins. In: Osborne NN (ed) Biology of serotonergic transmission. Wiley, New York, pp 249–277

    Google Scholar 

  • Baumgarten HG, Klemm HP, Sievers J, Schlossberger HG (1982b) Dihydroxytryptamines as tools to study the neurobiology of serotonin. Brain Res Bull 9:131–150

    PubMed  CAS  Google Scholar 

  • Baumgarten HG, Klemm HP, Schlossberger HG (1984) In-vivo-metabolism of 14C- 5-HT, 14C-5,6-DHT and 14C-5,7-DHT by MAO/COMT/aldehyde dehydrogenase in rat brain. In: Schlossberger HG, Kochen W, Linzen B, Steinhart H (eds) Progress in tryptophan and serotonin research. De Gruyter, Berlin, pp 241–249

    Google Scholar 

  • Bellomo G, Mirabelli F, DiMonte D, Richelmi P, Thor H, Orrenius C, Orrenius S (1987) Formation and reduction of glutathione protein mixed disulfides during oxidative stress. Biochem Pharmacol 36:1313–1320

    PubMed  CAS  Google Scholar 

  • Björklund A, Nobin A, Stenevi U (1973a) The use of neurotoxic dihydroxytryptamines as tools for morphological studies and localized lesioning of central indolamine neurons. Z Zellforsch 145:479–501

    PubMed  Google Scholar 

  • Björklund A, Nobin A, Stenevi U (1973b) The use of neurotoxic dihydroxytryptamines as tools for morphological studies on central indolamine neurons. Comm Dept Anat Univ Lund 3:1–26

    Google Scholar 

  • Björklund A, Baumgarten HG, Nobin A (1974) Chemical lesioning of central monoamine axons by means of 5,6- and 5,7-dihydroxytryptamine. Adv Biochem Psychopharmacol 10:13–33

    PubMed  Google Scholar 

  • Björklund A, Baumgarten HG, Horn AS, Nobin A, Schlossberger HG (1975) Neurotoxicity of hydroxylated tryptamines: structure-activity relationships. 2. In vitro studies on monoamine uptake inhibition and uptake impairment. Acta Physiol Scand [Suppl]429:31–60

    Google Scholar 

  • Blank CL, Kissinger PT, Adams RN (1972) 5,6-dihydroxyindole formation from oxidized 6-hydroxydopamine. Eur J Pharmacol 19:391–394

    PubMed  CAS  Google Scholar 

  • Bloom FE, Algeri S, Gropetti A, Revuelta A, Costa E (1969) Lesions of central norepinephrine terminals with 6-OH-dopamine: biochemistry and fine structure. Science 166:1284–1286

    PubMed  CAS  Google Scholar 

  • Borchardt RT (1975) Affinity labeling of catechol O-methyltransferase by the oxidation products of 6-hydroxydopamine. Mol Pharmacol 11:436–449

    CAS  Google Scholar 

  • Borchardt RT, Burgess SK, Reid JR, Liang YO, Adams RN (1977) Effects of 2- and/or 5-methylated analogues of 6-hydroxydopamine on norepinephrine- and dopamine-containing neurons. Mol Pharmacol 13:805–818

    CAS  Google Scholar 

  • Breese GR (1975) Chemical and immunochemical lesions by specific neurotoxic substances and antisera. In: Iversen LL, Iversen SD, Synder SH (eds) Handbook of psychopharmacology, vol 1. Plenum, New York, pp 137–189

    Google Scholar 

  • Breese GR, Cooper BR (1975) Behavioral and biochemical interactions of 5,7- dihydroxytryptamine with various drugs when administered intracisternally to adult and developing rats. Brain Res 98:517–527

    PubMed  CAS  Google Scholar 

  • Breese GR, Cooper BR (1977) Chemical lesioning: catecholamine pathways. In: Myers RD (ed) Methods in psychobiology, vol 3. Academic, London, pp 27–46

    Google Scholar 

  • Breese GR, Müller RA (1978) Alterations in the neurocytotoxicity of 5,7- dihydroxytryptamine by pharmacologic agents in adult and developing rats. Ann NY Acad Sci 305:160–174

    PubMed  CAS  Google Scholar 

  • Butcher LL, Hodge GK, Schaeffer JC (1975) Degenerative processes after intraventricular infusion of 6-hydroxydopamine. In: Jonsson G, Malmfors T, Sachs C (eds) Chemical tools in catecholamine research I. North-Holland, Amsterdam, pp 83–90

    Google Scholar 

  • Caccia S, Ballabio M, Guiso G, Rocchetti M, Garattini S (1982) Species differences in the kinetics and metabolism of fenfluramine isomers. Arch Int Pharmacodyn 258:15–28

    PubMed  CAS  Google Scholar 

  • Cadet JL (1986) The potential use of vitamin E and selenium in parkinsonism. Med Hypotheses 20:87–94

    PubMed  CAS  Google Scholar 

  • Cadet JL, Katz M, Jackson-Lewis V, Fahn S (1989) Vitamin E attennuates the toxic effects of intrastriatal injection of 6-hydroxydopamine (6-OHDA) in rats: behavioral and biochemical evidence. Brain Res 476:10–15

    PubMed  CAS  Google Scholar 

  • Cai P, Synder JK, Chen J-C, Fine R, Volicer L (1990) Preparation, reactivity, and nerotoxicity of tryptamine-4,5-dione. Tetrahedron Lett 31:969–972

    CAS  Google Scholar 

  • Campbell DB, Richards RP, Caccia S, Garattini S (1986) Stereoselective metabolism and the fate of fenfluramine in animals and man. In: Development of drug and modern medicines. Horwood, Chichester UK, pp 298–311

    Google Scholar 

  • Campbell DB, Ings RM, Gordon BH (1990b) The measurement of plasma and brain levels of (±) fenfluramine and (±) norfenfluramine in rats dosed for 4 days with 1 mg/kg p.o. and 5–10 and 40mg/kg s.c. twice daily. (Unpublished data)

    Google Scholar 

  • Chen J-C, Crino PB, Schnepper PW, To ACS, Volicer L (1989) Increased serotonin efflux by a partially oxidized serotonin: trypfamine-4,5-dione. J Pharmacol 250(1): 141–148

    CAS  Google Scholar 

  • Clineschmidt BV, Totaro JA, McGuffin JC, Pflueger AB (1976) Fenfluramine: long-term reduction in brain serotonin (5-hydroxytryptamine). Eur J Pharmacol 35:211–214

    PubMed  CAS  Google Scholar 

  • Clineschmidt BV, Zacchei AG, Totaro JA, Pflueger AB, McGuffin JC, Wishousky TI (1978) Fenfluramine and brain serotonin. Ann NY Acad Sci 305:222–241

    PubMed  CAS  Google Scholar 

  • Cohen G, Heikkila RE (1974) The generation of hydrogen peroxide, superoxide radical, and hydroxyl radical by 6-hydroxydopamine, dialuric acid, and related cytotoxic agents. J Biol Chem 249:2447–2452

    PubMed  CAS  Google Scholar 

  • Cohen G, Heikkila RE (1978) Mechanisms of action of hydroxylated phenylethylamine and indoleamine neurotoxins. Ann NY Acad Sci 305:74–84

    PubMed  CAS  Google Scholar 

  • Cohen G, Heikkila RE, Allis B, Cabbat F, Dembiec D, McNamee D, Mytilineou C, Winston B (1976); Destruction of sympathetic nerve terminals by 6- hydroxydopamine: protection by l-phenyl-3-(2-thiazolyl)-2-thiourea, diethyldithiocarbamate, methimazole, cysteamine, ethanol and n-butanol. J Pharmacol Exp Ther 199:336–352

    PubMed  CAS  Google Scholar 

  • Commins DL, Axt KJ, Vosmer G, Seiden LS (1987a) 5,6-dihydroxytryptamine, a serotonergic neurotoxin, is formed endogenously in the rat brain. Brain Res 403:7–14

    PubMed  CAS  Google Scholar 

  • Commins DL, Axt KJ, Vosmer G, Seiden LS (1987b) Endogenously produced 5,6-dihydroxytryptamine may mediate the neurotoxic effects of para- chloroamphetamine. Brain Res 419:253–261

    PubMed  CAS  Google Scholar 

  • Commins DL, Shaughnessy RA, Axt KJ, Vosmer G, Seiden LS (1989) Variability among brain regions in the specificity of 6-hydroxydopamine (6-OHDA)- induced lesions. J Neural Transm 77:197–210

    PubMed  CAS  Google Scholar 

  • Creveling CR, Rotman A (1978) Mechanism of action of dihydroxytryptamines. Ann NY Acad Sci 305:57–84

    PubMed  CAS  Google Scholar 

  • Creveling CR, Lundström J, McNeal ET, Tice L, Daly JW (1975) Dihydroxytryptamines; effects on noradrenergic function in mouse heart in vivo. Mol Pharmacol 11:211–222

    PubMed  CAS  Google Scholar 

  • Crino PB, Vogt BA, Chen J-C, Volicer L (1989) Neurotoxic effects of partially oxidized seorotonin: tryptamine-4,5-dione. Brain Res 504:247–257

    PubMed  CAS  Google Scholar 

  • Cromartie RIT, Harley-Mason J (1957) Melanin and its precursors. Biochem J 66:713–720

    PubMed  CAS  Google Scholar 

  • Cushing SD (1988) Characterization of the binding of xylamine, an irreversible inhibitor of the catecholamine transporter and depletor of neuronal noradrenergic stores. PhD thesis, University of California, Los Angeles (212 pp)

    Google Scholar 

  • Da Prada M, O’Brien RA, Tranzer JP, Pletscher A (1973) The effect of 5,6- dihydroxytryptamine on uptake, storage and metabolism of 5- hydroxytryptamine by blood platelets. J Pharmacol Exp Ther 186:213–219

    PubMed  Google Scholar 

  • Descarriers L, Beaudet A, De Champlain J (1975) Selective deafferentiation of rat neocortex by destruction of catecholamine neurons with intraventricular 6- hydroxydopamine. In: Jonsson G, Malmfors T, Sachs C (eds) Chemical tools in catecholamine research I. North-Holland, Amsterdam, pp 101–106

    Google Scholar 

  • Dexter D, Carter C, Agid F, Agid Y, Lees AJ, Jenner P, Mardsen CD (1986) Lipid peroxidation as cause of nigral cell death in Parkinson’s disease. Lancet 11:639–640

    Google Scholar 

  • Donaldson J, LaBella FS, Gesser D (1980) Enhanced autoxidation of dopamine as a possible basis of manganese neurotoxicity. Neurotoxicology 2:53–64

    Google Scholar 

  • Dudley MW, Siegel BS, Ogden AM, McCarty DR (1988) A low dose of xylamine produces sustained and selective decreases in rat brain norepinephrine without evidence of neuronal degeneration. J Pharmacol Exp Ther 247:174–179

    PubMed  CAS  Google Scholar 

  • Dudley MW, Howard BD, Cho AK (1990) The interaction of the beta-haloethyl benzylamines, xylamine, and DSP-4 with catecholaminergic neurons. Annu Rev Pharmacol Toxicol 30:387–403

    PubMed  CAS  Google Scholar 

  • Evans JM, Cohen G (1989a) Studies on the formation of 6-hydroxydopamine in mouse brain after administration of 2,4,5-trihydroxyphenylalanine (6- hydroxyDOPA). J Neurochem 52:1461–1407

    PubMed  CAS  Google Scholar 

  • Evans JM, Cohen G (1989b) Can trace amounts of neurotoxins destroy dopamine neurons? Neurochem Int 15:127–129

    PubMed  CAS  Google Scholar 

  • Finnegan KT, Skratt JJ, Irwin I, Langston JW (1990) The N-methyl-D-asparate (NMDA) receptor antagonist, dextrorphan, prevents the neurotoxic effects of 3,4-methylenedioxymethamphetamine (MDMA) in rats. Neurosci Lett 105:300–306

    Google Scholar 

  • Fleisher MR, Campbell DB (1969) Fenfluramine overdosage. Lancet 2:1306–1307

    PubMed  CAS  Google Scholar 

  • Floyd RA, Wiseman BB (1979) Spin-trapping free radicals in the autooxidation of 6-hydroxydopamine. Biochim Biophys Acta 586:196–207

    CAS  Google Scholar 

  • Fritschy J-M, Grzanna R (1989) Immunohistochemical analysis of the neurotoxic effects of DSP-4 identifies two populations of noradrenergic axon terminals. Neuroscience 30:181–197

    PubMed  CAS  Google Scholar 

  • Fritschy J-M, Lyons WE, Molliver ME, Grzanna R (1988) Neurotoxic effects of p-chloroamphetamine on the serotoninergic innervation of the trigeminal motor nucleus: a retrograde transport study. Brain Res 473:261–270

    PubMed  CAS  Google Scholar 

  • Fuller RW, Rush BW (1974) 5,6-dihydroxytryptamine is a substrate for catechol-O- methyltransferase. Biochem Pharmacol 23:2208–2209

    PubMed  CAS  Google Scholar 

  • Gal EM, Christiansen PA, Yunger LM (1975) Effect of p-chloroamphetamine on cerebral tryptophan-5-hydroxylase in vivo: a reexamination. Neuropharmacology 14:31–39

    PubMed  CAS  Google Scholar 

  • Gant TW, Rao DNR, Mason PR, Cohen GM (1988) Redox cycling and sulphydryl arylation; their relative importance in the mechanism of quinone cytotoxicity to isolated hepatocytes. Chem Biol Interact 65:157–173

    PubMed  CAS  Google Scholar 

  • Garattini S, Caccia S (1979) Comparison of the plasma levels of fenfluramine in rats after a toxic dose and in man after a maximal therapeutic dose. Toxicol Lett 3:285–290

    CAS  Google Scholar 

  • Garattini S, Caccia S (1990) Significance of fenfluramine neurotoxicity: a kinetic approach. In: Paoletti R, Vanhoutte PM, Brunello N, Maggi FM (eds) Serotonin - from cell biology to pharmacology and therapeutics. Kluwer, Dordrecht, pp 637–643

    Google Scholar 

  • Garattini S, Caccia S, Mennini T, Samanin R, Consolo S, Ladinsky H (1979) Biochemical pharmacology of the anorectic drug fenfluramine: a review. Curr Med Res Opin 6:15–27

    CAS  Google Scholar 

  • Gerson S, Baldessarini RJ (1975) Selective destruction of serotonin terminals in rat forebrain by high doses of 5,7-dihydroxytryptamine. Brain Res 85:140–145

    CAS  Google Scholar 

  • Geyer MA, Gordon J, Adams LM (1984) Depletion of central norepinephrine by intraventricular xylamine in rats. Eur J Pharmacol 100:227–231

    PubMed  CAS  Google Scholar 

  • Gibb JW, Mitros K, Stone DM, Hanson GR, Johnson M (1990) Flunarizine prevents the 3,4-methylenedioxymethamphetamine-induced alteration in the serotonergic system. Abstracts, 2nd IUPHAR satellite meeting on serotonin, Basel, July 11–13, p 127

    Google Scholar 

  • Gobbi M, Cerro L, Taddei C, Menini T (1990) Autoradiographic localization of (3H) paroxetine specific binding in the rat brain. Neurochem Intern 16:247–251

    CAS  Google Scholar 

  • Graham DG (1978) Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinones. Mol Pharmacol 14:633–643

    PubMed  CAS  Google Scholar 

  • Graham DG, Tiffany SM, Bell WR Jr, Gutknecht WF (1978) Autoxidation versus covalent binding of quinones as the mechanism of toxicity of dopamine, 6- hydroxydopamine, and related compounds toward C1300 neuroblastoma cells in vitro. Mol Pharmacol 14:644–653

    PubMed  CAS  Google Scholar 

  • Greene LA, Tischler AS (1982) PC12 pheochromocytoma cultures in neurobiological research. Adv Cell Neurobiol 3:373–414

    CAS  Google Scholar 

  • Grzanna R, Berger U, Fritschy J-M, Geffard M (1989) Acute action of DSP-4 on central norepinephrine axons: biochemical and immunohistochemical evidence for differential effects. J Histochem Cytochem 37:1435–1442

    PubMed  CAS  Google Scholar 

  • Hallman H, Jonsson G (1984) Pharmacological modifications of the neurotoxic action of the noradrenaline neurotoxin DSP-4 on central noredrenaline neurons. Eur J Pharmacol 103:269–278

    PubMed  CAS  Google Scholar 

  • Hamberger B (1967) Reserpine-resistant uptake of catecholamines in isolated tissues of the rat. Acta Physiol Scand [Suppl]295:1–56

    CAS  Google Scholar 

  • Harvey JA, McMaster SE (1975) Fenfluramine: evidence for a neurotoxic action on midbrain and a long-term depletion of serotonin. Psychopharmacol Commun 1:217–228

    PubMed  CAS  Google Scholar 

  • Harvey JA, McMaster SE (1977) Fenfluramine: cumulative neurotoxicity after chronic treatment with low dosages in the rat. Comm Psychopharmacol 1:3–17

    CAS  Google Scholar 

  • Harvey J, McMaster S, Yunger L (1975) p-Chloroamphetamine: selective neurotoxic action in brain. Science 187:841–843

    PubMed  CAS  Google Scholar 

  • Hattori T, McGeer PL, McGeer EG (1976) Synaptic morphology in the neostriatum of the rat: possible serotonergic synapse. Neurochem Res 1:451–467

    Google Scholar 

  • Hedreen J (1975) Increased nonspecific damage after lateral ventricle injection of 6-OHDA compared with fourth ventricle injection in rat brain. In: Jonsson G, Malmfors T, Sachs C (eds) Chemical tools in catecholamine research I. North- Holland, Amsterdam, pp 91–100

    Google Scholar 

  • Hedreen JC, Chalmers JP (1972) Neuronal degeneration in rat brain induced by 6-hydroxydopamine, a histological and biochemical study. Brain Res 47:1–36

    PubMed  CAS  Google Scholar 

  • Heikkila R, Cohen G (1971) Inhibition of biogenic amine uptake by hydrogen peroxide: a mechanism for toxic effects of 6-hydroxydopamine. Science 172:1257–1258

    PubMed  CAS  Google Scholar 

  • Heikkila RE, Cohen G (1972) Further studies on the generation of hydrogen peroxide by 6-hydroxydopamine. Mol Pharmacol 8:241–248

    PubMed  CAS  Google Scholar 

  • Heikkila RE, Cohen G (1973a) 6-Hydroxydopamine: evidence for superoxide radical as an oxidative intermediate. Science 181:456–457

    PubMed  CAS  Google Scholar 

  • Heikkila RE, Cohen G (1973b) The inhibition of 3H-biogenic amine uptake by 5,6-dihydroxytryptamine: a comparison with the effects of 6-hydroxydopamine. Eur J Pharmacol 21:66–69

    PubMed  CAS  Google Scholar 

  • Heikkila RE, Cabbat FS (1977) Chemiluminescence from 6-hydroxydopamine: involvement of hydrogen peroxide, the superoxide radical and the hydroxyl radical, a potential role for singlet oxygen. Res Commun Chem Pathol Pharmacol 17:649–662

    PubMed  CAS  Google Scholar 

  • Hekmatpanah CR, McKenna DJ, Peroutka SJ (1989) Reserpine does not prevent 3,4-methylenedioxymethamphetamine-induced neurotoxicity in the rat. Neurosci Lett 104:178–182

    PubMed  CAS  Google Scholar 

  • Horn AS, Baumgarten HG, Schlossberger HG (1973) Inhibition of the uptake of 5-hydroxytryptamine, noradrenaline and dopamine into rat brain homogenates by various hydroxylated tryptamines. J Neurochem 21:233–236

    PubMed  CAS  Google Scholar 

  • Insel TR, Battaglia G, Johannessen JN, Marra S, De Souza EB (1989) 3,4- methylenedioxymethamphetamine(“Ecstasy”)selectively destroys brain serotonin terminals in rhesus monkeys. J Pharmacol Exp Ther 249:713–720

    PubMed  CAS  Google Scholar 

  • Invernizzi R, Fracasso C, Caccia S, DiClemente A, Garattini S, Samanin R (1989) Effect of L-cysteine on the long-term depletion of brain indoles caused by p-chloroamphetamine and d-fenfluramine in rats. Relation to brain concentrations. Eur J Pharmacol 163:77–83

    PubMed  CAS  Google Scholar 

  • Invernizzi R, Fracasso C, Caccia S, Garattini S, Samanin R (1991) Effects of intracerebroventricular d-fenfluramine and d-norfenfluramine as a single injection or 2-h infusion on brain serotonin: relation to brain drug concentrations. Neuropharmacology 30:119–123

    PubMed  CAS  Google Scholar 

  • Iversen LL (1970) Inhibition of catecholamine uptake by 6-hydroxydopamine in rat brain. Eur J Pharmacol 10:408–410

    PubMed  CAS  Google Scholar 

  • Iversen LL (1975) Uptake processes for biogenic amines. In: Iversen LL, Iversen SD, Snyder SH (eds) Handbook of psychopharmacology, vol 3. Plenum, New York pp 96–117

    Google Scholar 

  • Jacobowitz D, Kostrzewa R (1971) Selective action of 6-hydroxydopa on noradrenergic terminals: mapping of preterminal axons of the brain. Life Sci 10:1329–1341

    CAS  Google Scholar 

  • Jaim-Etcheverry G, Zieher LM (1980) DSP-4: a novel compound with neurotoxic effects on noradrenergic neurons of adult and developing rats. Brain Res 188:513–523

    PubMed  CAS  Google Scholar 

  • Javoy F, Agid Y, Sotelo C (1975) Specific and non-specific catecholaminergic neuronal destruction by intracerebral injection of 6-OH-DA in the rat. In: Jonsson G, Malmfors T, Sachs C (eds) Chemical tools in catecholamine research I. North-Holland, Amsterdam, pp 75–82

    Google Scholar 

  • Johnson MP, Nichols DE (1990) Comparative serotonin neurotoxicity of the stereoisomers of fenfluramine and norfenfluramine. Pharmacol Biochem Behav 36:105–109

    PubMed  CAS  Google Scholar 

  • Johnson M, Hanson GR, Gibb JW (1989a) Characterization of acute N-ethyl-3,4- methylenedioxyamphetamine (MDE) action on the central serotonergic system. Biochem Pharmacol 38:4333–4338

    PubMed  CAS  Google Scholar 

  • Johnson M, Hanson GR, Gibb JW (1989b) Effect of MK-801 on on the decrease in tryptophan hydroxylase induced by methamphetamine and its methylenedioxy analog. Eur J Pharmacol 165:315–318

    PubMed  CAS  Google Scholar 

  • Jonsson G (1976) Studies on the mechanism of 6-hydroxydopamine cytotoxicity. Med Biol 54:406–420

    PubMed  CAS  Google Scholar 

  • Jonsson G (1980) Chemical neurotoxins as denervation tools in neurobiology. Annu Rev Neurosci 3:169–187

    PubMed  CAS  Google Scholar 

  • Jonsson G (1983) Chemical lesioning techniques: monoamine neurotoxins. In: Björklund A, Hökfelt T (eds) Methods in chemical neuroanatomy. Elsevier, Amsterdam, pp 463–507 (Handbook of chemical neuroanatomy, vol 1)

    Google Scholar 

  • Jonsson G, Sachs C (1970) Effects of 6-hydroxydopamine on the uptake and storage of noradrenaline in sympathetic adrenergic neurons. Eur J Pharmacol 9:141–155

    PubMed  CAS  Google Scholar 

  • Jonsson G, Sachs C (1971) Uptake and accumulation of 3H-6-hydroxydopamine in adrenergic nerves. Eur J Pharmacol 16:55–62

    PubMed  CAS  Google Scholar 

  • Jonsson G, Fuxe K, Hamberger B, Hökfelt T (1969) 6-Hydroxytryptamine: a new tool for monoamine fluorescence histochemistry. Brain Res 13:190–195

    PubMed  CAS  Google Scholar 

  • Jonsson G, Malmfors T, Sachs C (1972) Effects of drugs on the 6-hydroxydopamine induced degeneration of adrenergic nerves. Res Commun Chem Pathol Pharmacol 3:543–556

    PubMed  CAS  Google Scholar 

  • Jonsson G, Hallman H, Sundstrom E (1982) Effects of the noradrenaline neurotoxin DSP4 on the postnatal development of central noradrenaline neurons in the rat. Neuroscience 7:2895–2907

    PubMed  CAS  Google Scholar 

  • Kalia M (1991) Reversible, short lasting, and dose-dependent effect of d- fenfluramine on neocortical serotonergic axons. Brain Res 548:111–125

    PubMed  CAS  Google Scholar 

  • Kappus H (1985) Overview of enzymes systems involved in bio-reduction of drugs and in redox cycling. Biochem Pharmacol 35:1–6

    Google Scholar 

  • Klemm HP, Baumgarten HG (1978) Interaction of 5,6- and 5,7-dihydroxytryptamine with tissue monoamine oxidase. Ann NY Acad Sci 305:36–56

    PubMed  CAS  Google Scholar 

  • Klemm HP, Baumgarten HG, Schlossberger HG (1979) In vitro studies on the interaction of brain monoamine oxidase with 5,6- and 5,7-dihydroxytryptamine. J Neurochem 32:111–119

    PubMed  CAS  Google Scholar 

  • Klemm HP, Baumgarten HG, Schlossberger HG (1980) Polarographic measurements of spontaneous and mitochondria-promoted oxidation of 5,6- and 5,7-dihydroxytryptamine. J Neurochem 35:1400–1408

    PubMed  CAS  Google Scholar 

  • Kleven MS, Seiden LS (1989) D-, L- and DL-fenfluramine cause long-lasting depletions of serotonin in rat brain. Brain Res 505:351–353

    PubMed  CAS  Google Scholar 

  • Kleven MS, Schuster CR, Seiden LS (1988) Effects of depletion of brain serotonin by repeated fenfluramine on neurochemical and anorectic effects of acute fenfluramine. J Pharmacol Exp Ther 246:822–828

    PubMed  CAS  Google Scholar 

  • Koide M, Cho AK, Howard BD (1986) Characterization of xylamine binding to proteins of PC12 pheochromocytoma. J Neurochem 47:1277–1285

    PubMed  CAS  Google Scholar 

  • Kostrzewa RM (1988) Reorganization of noradrenergic neuronal systems following neonatal chemical and surgical injury. Prog Brain Res 73:405–423

    PubMed  CAS  Google Scholar 

  • Kostrzewa RM (1989) Neurotoxins that affect central and peripheral catecholamine neurons. In: Boulton AA, Baker GB, Juorio AV (eds) Neuromethods 12. Humana, Clifton, pp 1–48

    Google Scholar 

  • Kostrzewa RM, Jacobowitz DM (1974) Pharmacological actions of 6- hydroxydopamine. Pharmacol Rev 26:199–288

    PubMed  CAS  Google Scholar 

  • Lewin R (1985) Clinical trial for Parkinson’s disease. Science 230:527–528

    PubMed  CAS  Google Scholar 

  • Liang Y-O, Wightman RM, Plotsky P, Adams RN (1975) Oxidative interactions of 6-hydroxydopamine with CNS constituents. In: Jonsson G, Malmfors T, Sachs C (eds) Chemical tools in catecholamine research I. North-Holland, Amsterdam, pp 15–22

    Google Scholar 

  • Liston DR, Franz DN, Gibb JW (1982) Biochemical evidence for alteration of neostriatal dopaminergic functions by 5,7-dihydroxytryptamine. J Neurochem 38:1329–1335

    PubMed  CAS  Google Scholar 

  • Lookingland KJ, Chapin DS, McKay DW, Moore KE (1986) Comparative effects of the neurotoxins N-chloroethy-N-ethyl-N-2-bromobenzylamine hydrochloride (DSP4) and 6-hydroxydopamine on hypothalamic noradrenergic, dopaminergic and 5-hydroxytryptaminergic neurons in the male rat. Brain Res 365:228–234

    PubMed  CAS  Google Scholar 

  • Lorez H, Saner A, Richards JG, Da Prada M (1976) Accumulation of 5HT in non-terminal axons after p-chloro-N-methyl-amphetamine without degeneration of identified 5HT nerve terminals. Eur J Pharmacol 38:79–88

    PubMed  CAS  Google Scholar 

  • Lundström J, Ong H, Daly J, Creveling CR (1973) Isomers of 2,4,5-trihydroxy- phenethylamine (6-hydroxydopamine): long-term effects on the accumulation of [3H]-norepinephrine in mouse heart in vivo. Mol Pharmacol 9:505–513

    PubMed  Google Scholar 

  • Lyons WE, Fritschy J-M, Grzanna R (1989) The noradrenergic neurotoxin DSP-4 eliminates the coeruleospinal projection but spares projections of the A5 and A7 groups to the ventral horn of the rat spinal cord. J Neurosci 9:1481–1489

    PubMed  CAS  Google Scholar 

  • Malmfors T, Sachs C (1968) Degeneration of adrenergic nerves produced by 6- hydroxydopamine. Eur J Pharmacol 3:89–92

    PubMed  CAS  Google Scholar 

  • Mamounas LA, Molliver ME (1988) Evidence for dual serotonergic projections to neocortex: axons from the dorsal and medial raphe nuclei are differentially vulnerable to the neurotoxin p-chloroamphetamine (PCA). Exp Neurol 102:23–36

    PubMed  CAS  Google Scholar 

  • Marchant NC, Bass S, Breen MA, Tucker FA, Richards RP, Campbell DB (1991) Species differences in the metabolism of (±)fenfluramine, In: Hlavica P, Damani LA, Gorrod JW (eds) Progress in Pharmacology and Clinical Pharmacology, vol 8/3. Fischer, Stuttgart New York, pp 23–30 Proceedings of the 4th international conference on biological oxidation of nitrogen in organic molecules, Munich 1989

    Google Scholar 

  • Marek GJ, Vosmer G, Seiden LS (1990) The effects of monoamine uptake inhibitors and methamphetamine on neostriatal 6-hydroxydopamine (6-OHDA) formation, short-term monoamine depletions and locomotor activity in the rat. Brain Res 516:1–7

    PubMed  CAS  Google Scholar 

  • Martin R, Barlow JJ (1975) Muscle and gland cell degeneration in the octopus posterior salivary gland after 6-hydroxydopamine administration. J Ultrastruct Res 52:167–178

    PubMed  CAS  Google Scholar 

  • Massotti M, Scotti de Carolis A, Longo VG (1974) Effects of three dihydroxylated derivatives of tryptamine on behavior and on brain amine content in mice. Pharmacol Biochem Behav 2:769–775

    PubMed  CAS  Google Scholar 

  • McCreery RL, Dreiling R, Adams RN (1974a) Voltammetry in brain tissue: the fate of injected 6-hydroxydopamine. Brain Res 73:15–21

    PubMed  CAS  Google Scholar 

  • McCreery RL, Dreiling R, Adams RN (1974b) Voltammetry in brain tissue: quantitative studies of drug interactions. Brain Res 73:23–33

    PubMed  CAS  Google Scholar 

  • Mennini T, Borroni E, Samanin R, Garattini S (1981) Evidence of the existence of two different intraneuronal pools from which pharmacological agents can release serotonin. Neurochem Internat 3:289–294

    CAS  Google Scholar 

  • Michel PP, Hefti F (1990) Toxicity of 6-hydroxydopamine and dopamine for dopaminergic neurons in culture. J Neurosci Res 26:428–435

    PubMed  CAS  Google Scholar 

  • Milby K, Oke A, Adams RN (1982) Detailed mapping of ascorbate distribution in rat brain. Neurosci Lett 28:15–20

    PubMed  CAS  Google Scholar 

  • Misra HP, Fridovich I (1972) The role of superoxide anion in autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247(10):3170–3175

    PubMed  CAS  Google Scholar 

  • Molliver DC, Molliver ME (1990) Anatomic evidence for a neurotoxic effect of (±)-fenfluramine upon serotonergic projections in the rat. Brain Res 511:165–168

    PubMed  CAS  Google Scholar 

  • Molliver ME, Berger UV, Mamounas LA, Molliver DC, O’Hearn E, Wilson MA (1990) Neurotoxicity of MDMA and related compounds: anatomic studies. Ann NY Acad Sci 600:640–664

    Google Scholar 

  • Mytilineou C, Danias P (1989) 6-Hydroxydopamine toxicity to dopamine neurons in culture: potentiation by the addition of superoxide dismutase and N- acetylcysteine. Biochem Pharmacol 38(11): 1872–1875

    PubMed  CAS  Google Scholar 

  • O’Callaghan JP, Miller DB, Jensen KF, Schmidt CJ (1990) Serotonin depletions are not predictive of neurotoxicity: evidence from increases in glial fibrillary acidic protein induced by methylendioxymethamphetamine (MDMA) and 5,7- dihydroxytryptamine (5,7-DHT), meeting Oct 28-Nov 2. Society of neurosci, St Louis

    Google Scholar 

  • O’Hearn E, Battaglia G, De Souza EB, Kuhar MJ, Molliver ME (1988) Methylenedioxyamphetamine (MDA) and methylenedioxymethamphetamine (MDMA) cause selective ablation of serotonergic axon terminals in forebrain: immunocytochemical evidence for neurotoxicity. J Neurosci 8:2788–2803

    PubMed  Google Scholar 

  • Olney JW, Zorumski CF, Stewart GR, Price MT, Wang G, Labruyere J (1990) Excitotoxicity of L-DOPA and 6-OH-DOPA: implications for Parkinson’s and Huntington’s diseases. Exp Neurol 108:269–272

    PubMed  CAS  Google Scholar 

  • Onténiente B, König N, Sievers J, Jenner S, Klemm HP, Marty R (1980) Sturctural and biochemical changes in rat cerebral cortex after neonatal 6- hydroxydopamine administration. Anat Embryol (Berl) 159:245–255

    Google Scholar 

  • Osborne NN, Pentreath VW (1976) Effects of 5,7-dihydroxytryptamine on an identified 5-hydroxytryptamine-containing neurone in the central nervous system of the snail Helix pomatia. Br J Pharmacol 56:29–38

    PubMed  CAS  Google Scholar 

  • Paton DM (1973) Effects of substituted tryptamines on the efflux of noradrenaline from adrenergic nerves in rabbit atria. J Pharm Pharmacol 25:905–907

    PubMed  CAS  Google Scholar 

  • Pehlemann FW, Mohr S, Korr H, Sievers J, Beryy M (1987) Influence of meningeal cells on cell proliferation in the cerebellum. NATO ASI Ser 5:247–253

    Google Scholar 

  • Perez-Reyes E, Mason RP (1981) Characterization of the structure and reactions of free radicals from serotonin and related indoles. J Bio Chem 256:2427–2432

    CAS  Google Scholar 

  • Perry TL, Godin DV, Hansen S (1982) Parkinson’s disease: a disorder due to nigral glutathione deficiency? Neurosci Lett 33:305–310

    PubMed  CAS  Google Scholar 

  • Pileblad E, Slivka A, Bratvold D, Cohen G (1988) Studies on the autoxidation of dopamine: interaction with ascorbate. Arch Biochem Biophys 263:447–452

    PubMed  CAS  Google Scholar 

  • Powell WS, Heacock RA (1973) The oxidation of 6-hydroxydopamine. J Pharm Pharmacol 25:193–200

    PubMed  CAS  Google Scholar 

  • Reader TA (1989) Neurotoxins that affect central indoleamine neurons. In: Boulton AA, Baker GB, Juorio AV (eds) Neuromethods 12, Humana, Clifton, pp 49–102

    Google Scholar 

  • Reader TA, Gauthier P (1984) Catecholamines and serotonin in the rat central nervous system after 6-OHDA, 5,7-DHT and p-CPA. J Neural Trans 59:207–227

    CAS  Google Scholar 

  • Riederer P, Sofic E, Rausch WD, Schmidt B, Reynolds GP, Jellinger K, Youdim MBH (1989) Transltion metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. J Neurochem 52:515–520

    PubMed  CAS  Google Scholar 

  • Rollema H, De Vries JB, Westerink BHC, Van Putten FMS, Horn AS (1986) Failure to detect 6-hydroxydopamine in rat striatum after the dopamine releasing drugs dexamphetamine, methylamphetamine and MPTP. Eur J Pharmacol 132:65–69

    PubMed  CAS  Google Scholar 

  • Rosenberg PA (1988) Catecholamine toxicity in cerebral cortex in dissociated cell culture. J Neurosci 8:2887–2894

    PubMed  CAS  Google Scholar 

  • Rosengren E, Linder-Eliasson E, Carlsson A (1985) Detection of 5–5- cysteinyldopamine in human brain. J Neural Transm 63:247–253

    PubMed  CAS  Google Scholar 

  • Ross SB (1976) Long-term effects of N-2-chloroethyl-N-ethyl-2-bromobenzylamine hydrochloride on noradrenergic neurones in the rat brain and heart. Br J Pharmacol 58:521–527

    PubMed  CAS  Google Scholar 

  • Ross SB, Renyi AL (1976) On the long-lasting inhibitory effect of N-(2-chloroethyl)- N-ethyl-2-bromobenzylamine (DSP-4) on the active uptake of noradrenaline. J Pharm Pharmacol 28:458–459

    PubMed  CAS  Google Scholar 

  • Rotman A, Daly JW, Creveling CR, Breakefield XO (1976a) Uptake and binding of dopamine and 6-hydroxydopamine in murine neuroblastoma and fibroblast cells. Biochem Pharmacol 25:383–388

    PubMed  CAS  Google Scholar 

  • Rotman A, Daly JW, Creveling CR (1976b) Oxygen-dependent reaction of 6- hydroxydopamine, 5,6-dihydroxytryptamine, and related compounds with proteins in vitro: a model for cytotoxicity. Mol Pharmacol 12:887–899

    PubMed  CAS  Google Scholar 

  • Sachs C, Jonsson G (1975) Mechanisms of action of 6-hydroxydopamine. Biochem Pharmacol 24:1–8

    PubMed  CAS  Google Scholar 

  • Sachs C, Jonsson G, Heikkila R, Cohen G (1975) Control of the neurotoxicity of 6-hydroxydopamine by intraneuronal noradrenaline in rat iris. Acta Physiol Scand 93:345–351

    PubMed  CAS  Google Scholar 

  • Sanders-Bush E, Steranka LR (1978) Immediate and long-term effects of p- chloroamphetamine on brain amines. Ann NY Acad Sci 305:208–220

    PubMed  CAS  Google Scholar 

  • Sanders-Bush E, Bushing J, Sulser F (1972) Long-term effects of p- chloroamphetamine on tryptophan hydroxylase activity and on the levels of 5-hydroxytryptamine and 5-hydroxyindoleacetic acid in brain. Eur J Pharmacol 20:385–388

    PubMed  CAS  Google Scholar 

  • Saner A, Thoenen H (1971a) Model experiments on the molecular mechanism of action of 6-hydroxydopamine. Mol Pharmacol 7:147–154

    PubMed  CAS  Google Scholar 

  • Saner A, Thoenen H (1971b) Contributions to the molecular mechanism of action of 6-hydroxydopamine. In: Malmfors T, Thoenen H (eds) 6-Hydroxydopamine and catecholamine neurons. North-Holland, Amsterdam, pp 265–275

    Google Scholar 

  • Schallert T, Wilcox RE (1985) Neurotransmitter-selective brain lesions. In: Boulton AA, Baker GB (eds) Neuromethods, vol 1. Humana, Clifton, pp 343–387

    Google Scholar 

  • Schlossberger HG (1978) Synthesis and chemical properties of some indole derivatives. Ann NY Acad Sci 305:25–35

    CAS  Google Scholar 

  • Schmidt CJ, Ritter JK, Sonsalla PK, Hanson GR, Gibb JW (1985) Role of dopamine in the neurotoxic effects of methamphetamine. J Pharmacol Exp Ther 233:539–544

    PubMed  CAS  Google Scholar 

  • Seiden LS, Vosmer G (1984) Formation of 6-hydroxydopamine in caudate nucleus of the rat brain after a single large dose of methylamphetamine. Pharmacol Biochem Behav 21:29–31

    PubMed  CAS  Google Scholar 

  • Senoh S, Witkop B (1959a) Non-enzymatic conversions of dopamine to norepinephrine and trihydroxyphenethylamines. J Am Chem Soc 81:6222–6231

    CAS  Google Scholar 

  • Senoh S, Witkop B (1959b) Formation and rearrangements of aminochromes from a new metabolite of dopamine and some of its derivatives. J Am Chem Soc 81:6231–6235

    CAS  Google Scholar 

  • Senoh S, Creveling CR, Udenfriend S, Witkop B (1959) Chemical, enzymatic and metabolic studies on the mechanism of oxidation of dopamine. J Am Chem Soc 81:6236–6240

    CAS  Google Scholar 

  • Shaskan EG, Snyder SH (1970) Kinetics of serotonin accumulation into slices from rat brain; relationships to catecholamine uptake. J Pharmacol Exp Ther 178:404–418

    Google Scholar 

  • Sievers J, Klemm HP, Jenner S, Baumgarten HG, Berry M (1980) Neuronal and extraneuronal effects of intracisternally administered 6-hydroxydopamine on the developing rat brain. J Neurochem 34:765–771

    PubMed  CAS  Google Scholar 

  • Sievers, J, Berry M, Baumgarten HG (1981) The role of noradrenergic fibres in the control of postnatal cerebellar development. Brain Res 207:200–208

    PubMed  CAS  Google Scholar 

  • Sievers H, Sievers J, Baumgarten HG, König N, Schlossberger HG (1983) Distribution of tritium label in the neonate rat brain following intracisternal or subcutaneous administration of [3H]6-OHDA. An autoradiographic study. Brain Res 275:23–45

    PubMed  CAS  Google Scholar 

  • Sievers J, Pehlemann FW, Baumgarten HG, Berry M (1985) Selective destruction of meningeal cells by 6-hydroxydopamine: a tool to study meningeal-neuropithelial interaction in brain development. Dev Biol 110:127–135

    PubMed  CAS  Google Scholar 

  • Sievers J, Hartmann D, Gude S, Pehlemann FW, Berry M (1987) Influences of meningeal cells on the development of the brain. NATO ASI Ser 5:171–188

    Google Scholar 

  • Sinhababu AK, Borchardt RT (1985) Mechanism and products of autoxidation of 5,7-dihydroxytryptamine. J Am Chem Soc 107:7618–7627

    CAS  Google Scholar 

  • Sinhababu AK, Borchardt RT (1988) Molecular mechanism of biological action of the serotonergic neurotoxin 5,7-dihydroxytryptamine. Neurochem Int 12:273–284

    PubMed  CAS  Google Scholar 

  • Sinhababu AK, Borchardt RT (1989) Mechanism of autoxidation of 5,7- dihydroxytryptamine: 18O is incorporated on C-4 during oxidation with 18O2. J Am Chem Soc 111:2230–2233

    CAS  Google Scholar 

  • Slivka A, Cohen G (1985) Hydroxyl radical attack on dopamine. J Biol Chem 260:15466–15472

    PubMed  CAS  Google Scholar 

  • Sonsalla PK, Nicklas WJ, Heikkila RE (1989) Role for excitatory amino acids in methamphetamine-induced nigrostriatal dopaminergic toxicity. Science 243:398

    PubMed  CAS  Google Scholar 

  • Sotelo C (1991) Immunohistochemical study of short- and long-term effects of difenfluramine on the serotonergic innervation of the rat hippocampal formation. Brain Res 541:309–326

    PubMed  CAS  Google Scholar 

  • Spina MB, Cohen G (1988) Exposure of school synaptosomes to L-dopa increases levels of oxidized glutathione. J Pharmacol Exp Therap 247:502–507

    CAS  Google Scholar 

  • Spina MB, Cohen G (1989) Dopamine turnover and glutathione oxidation: implications for Parkinson disease. Proc Natl Acad Sci USA 86:1398–1400

    PubMed  CAS  Google Scholar 

  • Steranka LR, Rhind AW (1987) Effect of cysteine on the persistent depletion of brain monoamines by amphetamine, p-chloroamphetamine and MPTP. Eur J Pharmacol 133:191–197

    PubMed  CAS  Google Scholar 

  • Steranka LR, Sanders-Bush E (1979) Species differences in the rate of disappearance of fenfluramine and its effects on brain serotonin neurons. Biochem Pharmacol 28:3103–3107

    PubMed  CAS  Google Scholar 

  • Stone DM, Johnson M, Hanson GR, Gibb JW (1988) Role of endogenous dopamine in the central serotonergic deficits induced by 3,4 methylenedioxymethamphetamine. J Pharmacol Exp Ther 247:79–87

    PubMed  CAS  Google Scholar 

  • Sullivan SG, Stern A (1981) Effects of superoxide dismutase and catalase on catalysis of 6-hydroxydopamine and 6-aminodopamine autoxidation by iron and ascorbate. Biochem Pharmacol 30:2279–2285

    PubMed  CAS  Google Scholar 

  • Swan GA (1974) Structure, chemistry, and biosynthesis of the melanins. Fortschr Chem Org Naturst 31:522–585

    Google Scholar 

  • Thoenen H (1969) Bildung und funktionelle Bedeutung adrenerger Ersatztransmitter. Exp Med Pathol Klin 27:1–85

    Google Scholar 

  • Thoenen H, Tranzer JP (1973) The pharmacology of 6-hydroxydopamine. Annu Rev Pharmacol 13:169–180

    PubMed  CAS  Google Scholar 

  • Thoenen H, Tranzer JP (1968) Chemical sympathectomy by selective destruction of adrenergic nerve endings with 6-hydroxydopamine. Naunyn-Schmiedebergs Arch Pharmacol 261:271–288

    CAS  Google Scholar 

  • Tiffany-Castiglioni E, Saneto RP, Proctor PH, Perez-Polo JR (1982) Participation of active oxygen species in 6-hydroxydopamine toxicity to a human neuroblastoma cell line. Biochem Pharmacol 31:181–188

    PubMed  CAS  Google Scholar 

  • Tranzer JP, Thoenen H (1967) Electronmicroscopic localization of 5- hydroxydopamine (3,4,5-trihydroxy-phenyl-ethylamine), a new “false” sympathetic transmitter. Experientia 23:743–745

    PubMed  CAS  Google Scholar 

  • Tranzer JP, Thoenen H (1973) Selective destruction of adrenergic nerve terminals by chemical analogues of 6-hydroxydopamine. Experientia 29:314–315

    PubMed  CAS  Google Scholar 

  • Tse DCS, McCreery RL, Adams RN (1976) Potential oxidative pathways of brain catecholamines. J Med Chem 19:37–40

    PubMed  CAS  Google Scholar 

  • Uemura T, Shimazu T (1980) NADPH-dependent melanin pigment formation from 5-hydroxyindolealkylamines by hepatic and cerebral microsomes. Biochem Biophys Res Commun 93:1074–1081

    PubMed  CAS  Google Scholar 

  • Uemura T, Chiesara E, Cova D (1977) Interaction of epinephrine metabolites with the liver microsomal electron transport system. Mol Pharmacol 13:196–215

    PubMed  CAS  Google Scholar 

  • Uemura T, Matsushita H, Ozawa M, Fiori A, Chiesara E (1979) Irreversible binding of 5-hydroxytryptamine and 5-hydroxytryptophan metabolites to rat liver microsomal protein. FEBS Lett 101:59–62

    PubMed  CAS  Google Scholar 

  • Uemura T, Shimazu T, Miura R, Yamano T (1980) NADPH-dependent melanin pigment formation from 5-hydroxyindoleamines by hepatic and cerebral microsomes. Biochem Biophys Res Commun 93:1074–1081

    PubMed  CAS  Google Scholar 

  • Ungerstedt U (1986) 6-hydroxydopamine induced degeneration of central monoamine neurons. Eur J Pharmacol 5:107–110

    Google Scholar 

  • Unsicker K, Allan IJ, Newgreen DF (1976a) Extraneuronal effects of 6- hydroxydopamine and extraneuronal uptake of noradrenaline. Cell Tissue Res 173:45–69

    PubMed  CAS  Google Scholar 

  • Unsicker K, Chamley JH, McLean J (1976b) Extraneuronal effects of 6- hydroxydopamine. Cell Tissue Res 174:83–97

    PubMed  CAS  Google Scholar 

  • Uretsky NJ, Iversen LL (1969) Effects of 6-hydroxydopamine on noradrenaline- containing neurons in the rat brain. Nature 221:557–559

    PubMed  CAS  Google Scholar 

  • Uretsky NJ, Iversen LL (1970) Effects of 6-hydroxydopamine on catecholamine containing neurones in the rat brain. J Neurochem 17:269–278

    PubMed  CAS  Google Scholar 

  • Victor SJ, Baumgarten HG, Lovenberg W (1974) Depletion of tryptophan hydroxylase by 5,6-dihydroxytryptamine in rat brain - time course and regional differences. J Neurochem 22:541–546

    PubMed  CAS  Google Scholar 

  • Volicer L, Crino PB (1990) Involvement of free radicals in demential of the Alzheimer type: a hypothesis. Neurobiol Aging 11:567–571

    PubMed  CAS  Google Scholar 

  • Volicer L, Chen J-C, Crino PB, Vogt BA, Fishman J, Rubins J, Schnepper PW, Wolfe N (1989) In: Igbal K, Wisniewski HM, Winblad B (eds) Neurotoxic properties of a serotonin oxidation product: possible role in Alzheimer’s disease. Alzheimer’s disease and related disorders. Liss, New York, pp 453–465

    Google Scholar 

  • Waring P (1986) The time-dependent inactivation of human brain dihydropteridine reductase by the oxidation products of L-dopa. Eur J Biochem 155:305–310

    PubMed  CAS  Google Scholar 

  • Wick MM, Fitzgerald G (1981) Inhibition of reverse transcriptase by tyrosinase generated quinones related to levodopa and dopamine. Chem Biol Interact 38:99–107

    PubMed  CAS  Google Scholar 

  • Wolf WA, Bobik A (1988) Effects of 5,6-dihydroxytryptamine on the release, synthesis, and storage of serotonin: studies using rat brain synaptosomes. J Neurochem 50:534–542

    PubMed  CAS  Google Scholar 

  • Woolley DW, Shaw E (1954) A biochemical and pharmacological suggestion about certain mental disorders. Proc Natl Acad Sci USA 40:228–231

    PubMed  CAS  Google Scholar 

  • Wrona MZ, Dryhurst G (1987) Oxidation chemistry of 5-hydroxytryptamine. 1. Mechanism and products formed at micromolar concentrations. J Org Chem 52:2817–2825

    CAS  Google Scholar 

  • Wrona MZ, Dryhurst G (1988) Further insights into the oxidation chemistry of 5-hydroxytryptamine. J Pharm Sci 77:911–917

    PubMed  CAS  Google Scholar 

  • Wrona MZ, Dryhurst G (1989) Electrochemical oxidation of 5-hydroxytryptamine in acidic aqueous solution. J Org Chem 54:2718–2721

    CAS  Google Scholar 

  • Wrona MZ, Lemordant D, Lin L, LeRoy Blank C, Dryhurst G (1986) Oxidation of 5-hydroxytryptamine and 5,7-dihydroxytryptamine. A new oxidation pathway and formation of a novel neurotoxin. J Med Chem 29:499–505

    PubMed  CAS  Google Scholar 

  • Wrona MZ, Humphries K, Dryhurst G (1988) Oxidation chemistry of CNS indoles. In: Dryhurst G, Niki K (eds) Redox chémistry and interfacial behavior of biological molecules. Plenum, New York, pp 425–445

    Google Scholar 

  • Yoffe JR, Borchardt RT (1982) Characterization of serotonin uptake in cultured neuroblastoma cells. Mol Pharmacol 21:362–367

    PubMed  CAS  Google Scholar 

  • Zaczek R, Battaglia G, Culp S, Appel NM, Contrera JF, De Souza EB (1990a) Effects of repeated fenfluramine administration on indices of monoamine function in rat brain: pharmacokinetic, dose response, regional specificity and time course data. J Pharmacol Exp Ther 253:104–112

    PubMed  CAS  Google Scholar 

  • Zaczek R, Fritschy J-M, Culp S, De Souza EB, Grzanna R (1990b) Differential effects of DSP-4 on noradrenaline axons in cerebral cortex and hypothalamus may reflect heterogeneity of noradrenaline uptake sites. Brain Res 522:308–314

    PubMed  CAS  Google Scholar 

  • Zaizen Y, Nakagawara A, Ikeda K (1986) Patterns of destruction of mouse neuroblastoma cells by extracellular hydrogen peroxide formed by 6- hydroxydopamine and ascorbate. J Cancer Res Clin Oncol 111:93–97

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Baumgarten, H.G., Zimmermann, B. (1994). Neurotoxic Phenylalkylamines and Indolealkylamines. In: Herken, H., Hucho, F. (eds) Selective Neurotoxicity. Springer Study Edition, vol 102. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-85117-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-85117-9_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57815-4

  • Online ISBN: 978-3-642-85117-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics