Skip to main content

Sodium Channel Specific Neurotoxins: Recent Advances in the Understanding of Their Molecular Mechanisms

  • Chapter
Selective Neurotoxicity

Part of the book series: Springer Study Edition ((SSE,volume 102))

  • 98 Accesses

Abstract

The voltage-dependent sodium channel is a large transmembrane glycoprotein that mediates the sodium current during the action potential, a characteristic property of excitable cells (Hodgkin and Huxley 1952). A number of small molecules (<8 kDa) of diverse structure have quite specific effects on the physiological properties of the sodium channel by directly binding to the protein. These toxins, which have been extensively used for the molecular characterization of the sodium channel, include (a) those that inhibit ion transport, e.g., tetrodotoxin (TTX), (b) lipid-soluble activators of the sodium channel, e.g., batrachotoxin (BTX), (c) the North African α- scorpion toxins, e.g., Leiurus quinquestriatus toxin, (d) the American (β- scorpion toxins, e.g., Tityus toxin, (e) ciguatoxin and brevetoxin (see Table1 and Fig. 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agnew WS (1984) Voltage-regulated sodium channel molecules. Annu Rev Physiol 46:517–530

    Article  PubMed  CAS  Google Scholar 

  • Albuquerque EX, Daly JW, Warnick JE (1988) Macromolecular sites for specific neurotoxins and drugs on chemosensitive synapses and electrical excitation in biological membranes. In: Narahashi T (ed) Ιοή channels, vol 1. Plenum, New York, pp 95–150

    Google Scholar 

  • Auld VJ, Goldin AL, Krafte DS, Marshall J, Dunn JM, Catterall WA, Lester HA, Davidson N, Neuron Dunn RJ (1988) A rat sodium channel α subunit with novel gating properties. Neuron 1:449–461

    Article  PubMed  CAS  Google Scholar 

  • Barchi RL (1988) Probing the structure of the voltage-dependent sodium channel. Annu Rev Neurosci 11:455–495

    Article  PubMed  CAS  Google Scholar 

  • Barhanin J, Pauron D, Lombert A, Norman R, Vijverberg HP, Giglio J, Lazdunski M (1983) Electrophysiological characterization, solubilization and purification of Tityus toxin. EMBO J 2:915–920

    PubMed  CAS  Google Scholar 

  • Becker S, Atherton E, Gordon RD (1989) Synthesis and characterization of μ-conotoxin IIIA. Eur J Biochem 185:79–84

    Article  PubMed  CAS  Google Scholar 

  • Becker S, Liebe R. Gordon RD (1990) Synthesis and characterization of a N- terminal-specific 125 I-photoaffinity derivative of μ-conotoxin GIIIA which binds to the voltage-dependent sodium channel. FEBS Lett 272:152–154

    Article  PubMed  CAS  Google Scholar 

  • Beneski DA, Catterall WA (1980) Covalent labelling of the protein components of the sodium channel with a photoactivable derivative of scorpion toxin. Proc Natl Acad Sci USA 77:639–643

    Article  PubMed  CAS  Google Scholar 

  • Bidard J-N, Vijverberg HPM, Frelin C, Changue E, Legrand A-M, Bagnis R, Lazdunski M (1984) Ciguatoxin is a novel type of sodium channel toxin. J Biol Chem 259:8353–8357

    PubMed  CAS  Google Scholar 

  • Casadei JM, Gordon RD, Barchi RL (1986) Immunoaffinity isolation of sodium channels from rat skeletal muscle. Analysis of subunits. J Biol Chem 261:4318–4323

    PubMed  CAS  Google Scholar 

  • Catterall WA (1980) Neurotoxins that act on the voltage sensitive sodium channels in excitable membranes. Annu Rev Pharmacol Toxicol 20:15–43

    Article  PubMed  CAS  Google Scholar 

  • Catterall WA (1986) Molecular properties of voltage-sensitive sodium channels. Annu Rev Biochem 55:953–985

    Article  PubMed  CAS  Google Scholar 

  • Catterall WA (1988) Structure and function of voltage sensitive ion channels. Science 242:50–61

    Article  PubMed  CAS  Google Scholar 

  • Cruz LJ, Gray WE, Olivera BM, Zeikus RD, Kerr L, Yoshikami D, Moczydlowski E (1985) Conus geographus toxins that discriminate between neuronal and muscle sodium channels. J Biol Chem 260:9280–9288

    PubMed  CAS  Google Scholar 

  • Cruz LJ, Kupryszewski G, LeCheminant GW, Gray BW, Olivera BM, Rivier J (1989) μ-Conotoxin IIIA a peptide ligand for muscle sodium channels: chemical synthesis, radiolabelling and receptor characterization. Biochemistry 28:3437–3442

    Article  PubMed  CAS  Google Scholar 

  • Elmer LW, O’Brien BJ, Nutter TJ, Angelides KJ (1985) Physiochemieal characterization of the α-peptide of the sodium channel from rat brain. Biochemistry 24:8128–8137

    Article  PubMed  CAS  Google Scholar 

  • Emerick ME, Agnew WS (1989) Identification of phosphorylation sites for adenosine 3´,5´ cyclic phosphate dependent protein kinase on the voltage dependent sodium channel from E. electricus. Biochemistry 28:8367–8380

    Article  PubMed  CAS  Google Scholar 

  • Feller DJ, Talvenheimo JA, Catterall WA (1985) The sodium channel from rat brain. Reconstitution of the voltage-dependent scorpion toxin binding in vesicles of defined lipid composition. J Biol Chem 260:11542–11547

    PubMed  CAS  Google Scholar 

  • Fontecilla-Camps JC, Almassy RJ, Duddath FL, Watt DD, Bugg CE (1980) Three dimensional structure of a protein from scorpion venom: a new structural class of neurotoxins. Proc Natl Acad Sci USA 77:6496–6500

    Article  PubMed  CAS  Google Scholar 

  • Gonoi T, Ohizumi Y, Nakamura H, Kobayashi J, Catterall WA (1987) Conus toxin geographutoxin II distinguishes two functional sodium channel subtypes in rat muscle cells developing in vitro. J Neurosci 7:1726–1731

    Google Scholar 

  • Gordon RD, Fieles WE, Schotland DL, Angeletti RA, Barchi RL (1987) Topological localization of a C-terminal region of the voltage dependent sodium channel from E. electricus using antibodies against a synthetic peptide. Proc Natl Acad Sci USA 84:308–313

    Article  PubMed  CAS  Google Scholar 

  • Gordon RD, Li Y, Fieles WE, Schotland DL, Barchi RL (1988) Topological localization of a segment of the eel voltage-dependent sodium channel primary sequence (AA 927–938) that discriminates between models of tertiary structure. J Neurosci 8:3742–3749

    PubMed  CAS  Google Scholar 

  • Gray WR, Olivera BM, Cruz LJ (1988) Peptide toxins from venomous Conus snails. Annu Rev Biochem 57:665–700

    Article  PubMed  CAS  Google Scholar 

  • Greenblatt RE, Blatt Y, Montai M (1985) Structure of the voltage sensitive sodium channel. Inferences derived from computer-aided analysis of Electrophorus electricus channel primary structure. FEBS Lett 193:125–134

    Article  PubMed  CAS  Google Scholar 

  • Guy HR Seetharamulu P (1986) A molecular model of the action potential sodium channel. Proc Natl Acad Sci USA 83:508–513

    Article  PubMed  CAS  Google Scholar 

  • Hanke W, Boheim G, Barhanin J, Pauron D, Lazdunshi M (1984) Reconstitution of highly purified saxitoxin sensitive Na+ channels into planar lipid bilayers. EMBO J 3:509–515

    PubMed  CAS  Google Scholar 

  • Hatanaka Y, Yoshida E, Nakayama H, Abe T, Satake M, Kanaoka Y (1990) Photolabile μ-conotoxins with a chromogenic phenyldizirine. A novel probe for the muscle type sodium channels. FEBS Lett 260:27–30

    Article  CAS  Google Scholar 

  • Hidaka Y, Sato K, Nakamura H, Kaboyashi J, Ohizumi Y, Simonishi Y (1990) Disulphide pairings in geographutoxin, a peptide neurotoxin from Conus geographus. FEBS Lett 264:29–32

    Article  PubMed  CAS  Google Scholar 

  • Hille (1984) Ion channels of excitable membranes. Sinauer, Sunderland

    Google Scholar 

  • Hodgkin AL, Huxley AF (1952) The components of membrane conductance in the giant axon of Loligo. J Physiol (Lond) 116:473–496

    CAS  Google Scholar 

  • Huang JMC, Wu CH, Baden DG (1984) Depolarizing action of a red tide dinoflagellate brevetoxin on axonal membranes. J Pharmacol Exp Ther 229:615–621

    PubMed  CAS  Google Scholar 

  • Kallen RG, Sheng ZH, Yang J, Chen L, Rogart RB, Barchi RL (1990) Primary structure and expression of a sodium channel characteristic of denervated and immature rat skeletal muscle. Neuron 4:233–242

    Article  PubMed  CAS  Google Scholar 

  • Kao CY, Levinson SR (eds) (1988) Tetrodotoxin, saxitoxin and the molecular biology of the sodium channel. Ann NY Acad Sci 479

    Google Scholar 

  • Kosower E (1985) A structural and dynamic molecular model for the sodium channel of Electrophorus electricus. FEBS Lett 182:234–242

    Article  PubMed  CAS  Google Scholar 

  • Kraner SD, Tanaka JC, Barchi RL (1985) Purification and functional reconstitution of the voltage sensitive sodium channel from rabbit “T” tubular membranes. J Biol Chem 260:6342–6347

    Google Scholar 

  • Lazdunski M, Renaud JF (1982) The action of cardiotoxins on the cardiac plasma membranes. Annu Rev Physiol 44:463–473

    Article  PubMed  CAS  Google Scholar 

  • Lazdunski M, Frelin C, Barhanin J, Lombet A, Meiri H, Pauron D, Romey G, Schmid A, Schweitz H, Vigue P, Vijverberg HPM (1986) Polypeptide toxins as tools to study voltage-sensitive Na+ channels. Ann NY Acad Sci 479:204–221

    Article  PubMed  CAS  Google Scholar 

  • Lombet A, Lazdunski M (1984) Characterization, solubilization and affinity labelling of the cardiac Na+ channel using Tityus gamma toxin. Eur J Biochem 141:651–660

    Article  PubMed  CAS  Google Scholar 

  • Mckinnon R, Miller C (1989) Mutant potassium channels with altered binding of charybdotoxin, a pore-blocking peptide inhibitor. Science 245:1382–1385

    Article  Google Scholar 

  • Meiri H, Spira G, Sammar M, Namir M, Schwartz A, Komoriya A, Kosower EM, Palti Y (1987) Mapping a region associated with the sodium channel inactivation using antibodies to a synthetic peptide corresponding to a part of the channel. Proc Natl Acad Sci USA 84:5058–5062

    Article  PubMed  CAS  Google Scholar 

  • Moczydlowski E, Hall S, Garber SS, Strichartz GR, Miller C (1984a) Voltage- dependent blockade of muscle Na+ channels by guanidinium ions. Effect of toxin charge. J Gen Physiol 84:687–704

    Article  PubMed  CAS  Google Scholar 

  • Moczydlowski E, Garber SS, Miller C (1984b) Batrachotoxin-activated Na+ channels in planar lipid bilayers. Competition of tetrodotoxin block by Na+ channels. J Gen Physiol 84:665–686

    Article  PubMed  CAS  Google Scholar 

  • Moczydlowski E, Olivera BM, Gray WR, Strichartz GR (1986) Discrimination of muscle and neuronal Na-channel subtypes by binding competition between [3H]saxitoxin and μ-conotoxins. Proc Natl Acad Sci USA 83:5321–5325

    Article  PubMed  CAS  Google Scholar 

  • Noda M, Shimizu S, Tanabe T, Takai T, Kayano T, Ikeda T, Takahashi H, Nakayama H, Kanoka Y, Minamino N, Kangawa K, Matsuo H, Raftery MA, Hirose T, Inayama S, Hayashida H, Miyata T, Numa S (1984) Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature 312:121–127

    Article  PubMed  CAS  Google Scholar 

  • Noda M, Ikeda T, Kayano T, Suzuki H, Takeshima H, Kurasaki M, Takahashi H, Numa S (1986a) Existence of distinct sodium channel messenger RNAs in rat brain. Nature 320:188–192

    Article  PubMed  CAS  Google Scholar 

  • Noda M, Ikeda T, Suzuki H, Takeshima H, Takahashi T, Kuno M, Numa S (1986b) Expression of functional sodium channels from cDNA. Nature 322:826–828

    Article  PubMed  CAS  Google Scholar 

  • Noda M, Suzuki H, Numa S, Stühmer W (1989) A single point mutation confers tetrodotoxin insensitivity on the sodium channel II. FEBS Lett 259:213–216

    Article  PubMed  CAS  Google Scholar 

  • Norman RI, Schmid A, Lombert A, Barhanin J, Lazdunski M (1983) Purification of the binding protein for Tityus gamma toxin identified with a gating component of the voltage-dependent sodium channel. Proc Natl Acad Sci USA 80:4164–4168

    Article  PubMed  CAS  Google Scholar 

  • Ohizumi Y, Nakamura H, Kobayashi J, Catterall WA (1986) Specific inhibition of [3H]saxitoxin binding to skeletal muscle sodium channels by geographutoxin II, a polypeptide channel blocker. J Biol Chem 261:6149–6152

    PubMed  CAS  Google Scholar 

  • Ott K-H, Becker S, Gordon RD, Rueterjans H (1991) FEBS letts. Solution structure of μ-conotoxin GUI A analysed by 2D-NMR and distance geometry calculations. FEBS Lett 278:160–166

    Article  PubMed  CAS  Google Scholar 

  • Rehm H, Lazdunski M (1988) Purification and subunit structure of a putative K+-channel protein identified by its binding properties for dendrotoxin. Proc Natl Acad Sci USA 85:4919–4923

    Article  PubMed  CAS  Google Scholar 

  • Rogart RB, Cribbs LL, Muglia LK, Kephart DD, Kaiser MW (1989) Molecular cloning of a putative tetrodotoxin-resistant rat heart Na+ channel isoform. Proc Natl Acad Sci USA 86:8170–8174

    Article  PubMed  CAS  Google Scholar 

  • Salkoff L, Butler A, Wei A, Scavarda N, Giffen K, Ifune C, Goodman R, Mandel G (1987) Genomic organization and deduced amino acid sequence of a putative sodium channel in Drosophila. Science 237:744–749

    Article  PubMed  CAS  Google Scholar 

  • Sato S, Nakamura H, Ohizumi Y, Kaboyashi J, Hirata Y (1983) The amino acid sequences of homologous hydroxyproline containing myotoxins from the snail Conus geographus venom. FEBS Lett 155:277–280

    Article  PubMed  CAS  Google Scholar 

  • Scheuer T, Auld V, Boyd S, Offord J, Dunn R, Catterall WA (1990) Functional properties of the rat brain sodium channel expressed in a somatic cell line. Science 247:854–858

    Article  PubMed  CAS  Google Scholar 

  • Schweitz H, Bidard J-N, Frelin C, Pauron D, Vijverberg HPM, Mahashneh DH, Lazdunski M (1985) Purification, sequence and pharmacological properties of sea anemone toxins from Radianthus paumotensis. A new class of sea anemone toxin acting on the sodium channel. Biochemistry 24:3554–3561

    Article  PubMed  CAS  Google Scholar 

  • Sharkey RG, Beneski DA, Catterall WA (1984) Differential labelling of the a and the ß subunits of the sodium channel by photoactivable derivatives of scorpion toxin. Biochemistry 23:6078–6086

    Article  PubMed  CAS  Google Scholar 

  • Stühmer W, Conti F, Suzuki H, Wong X, Noda M, Yahagi N, Kubo H, Numa S (1989) Structural parts involved in the activation and inactivation of the sodium channel. Nature 339:597–603

    Article  PubMed  Google Scholar 

  • Tanaka JC, Furman RE, Barchi RL (1986) Skeletal muscle sodium channels: isolation and reconstitution. In: Miller C (ed) Ion channel reconstitution. Plenum, New York, pp 307–336

    Google Scholar 

  • Tejedor FJ, Catterall WA (1988) Site of covalent attachment of α-seorpion toxin derivatives in the domain I of the sodium channel α-subunit. Proc Natl Acad Sci USA 85:8742–8746

    Article  PubMed  CAS  Google Scholar 

  • Thomsen WJ, Catterall WA (1989) Localization of the receptor site for α-scorpion toxin by antibody binding mapping: implications for the sodium channel topology. Proc Natl Acad Sci USA 86:10161–10165

    Article  PubMed  CAS  Google Scholar 

  • Torda AE, Mabbut BC, van Gunsteren WI, Norton RS (1988) Backbone folding of the polypeptide cardiac stimulant Anthropleura A determined by nuclear magnetic resonance, distance geometry and molecular dynamics. FEBS Lett 239:266–270

    Article  PubMed  CAS  Google Scholar 

  • Trimmer JS, Agnew WS (1989) Molecular diversity of voltage sensitive sodium channels. Annu Rev Physiol 51:401–418

    Article  PubMed  CAS  Google Scholar 

  • Trimmer JS, Cooperman SS, Tomiko SA, Zhou J, Crean SM, Boyle MB, Kallen RG, Sheng Z, Barchi RL, Sigworth FJ, Goodman R, Agnew WS, Mandel G (1989) Primary structure and functional expression of a mammalian skeletal muscle sodium channel. Neuron 3:33–49

    Article  PubMed  CAS  Google Scholar 

  • Vassilev PM, Scheuer T, Catterall WA (1988) Identification of an intracelluler peptide seqment involved in sodium channel inactivation. Science 241:1658–1661

    Article  PubMed  CAS  Google Scholar 

  • Widmer H, Billeter M, Wüthrich K (1989) Three dimensional structure of the neurotoxin ATX Ia from Anemonia sulcata in aqueous solution determined by nuclear resonance spectroscopy. Proteins Struct Funct Genet 6:357–371

    Article  PubMed  CAS  Google Scholar 

  • Yanagawa Y, Abe T, Satake M (1986) Blockade of [3H] lysine-tetrodotoxin binding to sodium channel proteins by conotoxin GIIIA. Neurosci Lett 64:7–12

    Article  PubMed  CAS  Google Scholar 

  • Yanagawa Y, Abe T, Satake M, Odani S, Suzuki J, Ishikawa K (1988) A novel sodium channel inhibitor from Conus geographus: purification, structure and pharmacological properties. Biochemistry 27:6256–6262

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Becker, S., Gordon, R.D. (1994). Sodium Channel Specific Neurotoxins: Recent Advances in the Understanding of Their Molecular Mechanisms. In: Herken, H., Hucho, F. (eds) Selective Neurotoxicity. Springer Study Edition, vol 102. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-85117-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-85117-9_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57815-4

  • Online ISBN: 978-3-642-85117-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics