Skip to main content

Peptide Toxins Acting on the Nicotinic Acetylcholine Receptor

  • Chapter
  • 97 Accesses

Part of the book series: Springer Study Edition ((SSE,volume 102))

Abstract

Ever since Claude Bernard identified the neuromuscular junction as the site of action of the arrow poison curare (Bernard 1857), neurotoxins have been at the focus of interest for researchers investigating the mechanisms of propagation and transmission of nerve impulses. Neurotoxins turned out to be very valuable tools in these investigations (Mebs and Hucho 1990; Hucho and Ovchinnikov 1983). They are currently used for elucidating the proteins of nerve and muscle membranes with atomic resolution.

Work from the lab included in this review was supported by the Deutsche Forschungsgemeinschaft (SfB 312) and the Fonds der Chemischen Industrie.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramson SN, Culver P, Klines T (1988) Lophotoxin and related coral toxins covalently label the α-subunit of the nicotinic acetylcholine receptor. J Biol Chem 263:18.568–18.573

    Google Scholar 

  • Abramson SN, Li Y, Culver P, Taylor P (1989) An analog of lophotoxin reacts covalently with Tyr 190 in the α-subunit of the nicotinic acetylcholine receptor. J Biol Chem 253:12666–12672

    Google Scholar 

  • Agard DA, Stroud RM (1982) α-Bungarotoxin structure revealed by a rapid method for averaging electron density of noncrystallographically translationally related molecules. Acta Crystallogr [A]38:186–194

    Google Scholar 

  • Albuquerque EX, Adler M, Spivak CE, Aguayo LG (1980) Mechanism of nicotinic channel activation and blockade. Ann NY Acad Sci 358:204–238

    PubMed  CAS  Google Scholar 

  • Albuquerque EX, Daly JW, Warnick JE (1988) Macromolecular sites for specific neurotoxins and drugs on chemosensitive synapses and electrical excitation in biological membranes. In: Narahashi T (ed) Jon channels, p 95

    Google Scholar 

  • Aronsheim A, Eshel Y, Mosckowitz R, Gershoni JM (1988) Characterization of the binding of α-bungarotöxin to bacterially expressed cholinergic binding sites. J Biol Chem 263:9933–9937

    Google Scholar 

  • Atassi MZ (1991) Postsynaptic neurotoxin-acetylcholine receptor interaction and the binding sites on the two molecules. In: Tu A (ed) Reptile and amphibian venoms. Dekker, New York, pp 53–83 (Handbook of natural toxins, vol 5)

    Google Scholar 

  • Atassi MZ, McDaniel CS, Manshouri T (1988) Mapping by synthetic peptides of the binding sites for acetylcholine receptor on α-bungarotoxin. J Protein Chem 7:655–666

    PubMed  CAS  Google Scholar 

  • Baldwin TJ, Yoshihara CM, Blackmer, Kikiner CR, Burden SJ (1988) Regulation of acetylcholine receptor transcript expression during development in Xenopus laevis J Cell Biol 106:469–478

    PubMed  CAS  Google Scholar 

  • Banks BEC, Miledi R, Shipolini RA (1974) The primary sequences and neuromuscular effects of three neurotoxic polypeptides from the venom of Dendroaspis viridis. Eur J Biochem 45:457–468

    PubMed  CAS  Google Scholar 

  • Bechis G, Granier C, van Rietschoten J, Jover E, Rochat H, Miranda F (1976) Purification of six neurotoxins from the venom of Dendroaspis viridis: primary structure of two long toxins. Eur J Biochem 68:445–456

    PubMed  CAS  Google Scholar 

  • Bernard MC (1857) Leçon sur les effets des substances toxiques et médicamenteuses. Baillière, Paris, pp 238–306

    Google Scholar 

  • Betz H (1990) Ligand-gated ion channels in the brain: the amino acid receptor superfamily. Review. Neuron 5:383–392

    PubMed  CAS  Google Scholar 

  • Bolger MB, Dionne V, Chrivia J, Johnson DA, Taylor P (1984) Interaction of a fluorescent acyldicholine with the nicotinic acetylcholine receptor and acetylcholinesterase. Mol Pharmacol 26:57–69

    PubMed  CAS  Google Scholar 

  • Bossy B, Ballivet M, Spierer P (1988) Conservation of neural nicotinic acetylcholine receptor from Drosophila to vertebrate central nervous systems. EMBO J 7:611–618

    PubMed  CAS  Google Scholar 

  • Botes DP (1971) The amino acid sequences of toxin a and ß from Naja nivea venom and the disulfide bonds of toxin a. J Biol Chem 246:7383–7391

    PubMed  CAS  Google Scholar 

  • Botes DP (1972) Snake venom toxins: the amino acid sequences of toxins b and d from Naja melanoleuca venom. J Biol Chem 247:2866–2871

    PubMed  CAS  Google Scholar 

  • Botes DP, Strydom DJ (1969) A neurotoxin, toxin a, from Egyptian cobra (Naja naja haje) venom: purification, properties, and complete amino acid sequence. J Biol Chem 244:4147–4157

    PubMed  CAS  Google Scholar 

  • Botes DP, Strydom DJ, Anderson CG, Christensen PA (1971) Snake venom toxins: purification and properties of three toxins from Naja nicea (linnaeus) (Cape cobra) venom and the amino acid sequence of toxin a. J Biol Chem 246:3132–3139

    PubMed  CAS  Google Scholar 

  • Boulter J, Evans K, Goldman D, Martin G, Heinemann S Patrick J (1986) Isolation of a cDNA clone coding for a possible neuronal nicotinic acetylcholine receptor alpha-subunit. Nature 319:368–374

    PubMed  CAS  Google Scholar 

  • Boulter J, O’Shea-Greenfield A, Duvoisin R, Connolly JG, Wada E, Jensen A, Gardner PD, Ballivet M, Deneris ES, McKimJon D, Heinemann S, Patrick J (1990) α3, α5 and β4: three members of the rat neuronal nicotinic acetylcholine receptor-related gene family form a gene cluster. J Biol Chem 265:4472–4482

    PubMed  CAS  Google Scholar 

  • Bystrov VF, Tsetlin VI, Karlsson E, Pashkov VS, Utkin Y, Kondakov VI, Pluzhnikov KA, Arseniev AS, Ivanov VT, Ovchinnikov YA (1983) Magnetic resonance evaluation of snake neurotoxin structure-function relationship. In: Hucho F, Ovchinnikov YA (eds) Toxins as tools in neurochemistry, de Gruyter, Berlin, p 193

    Google Scholar 

  • Chang CC, Lee CY (1963) Isolation of neurotoxins from the venom of Bungarus multicinctus and their modes of neuromuscular blocking action. Arch Int Pharmacodyn 144:316–332

    Google Scholar 

  • Chang CC, Kawata Y, Sakiyama F, Hayashi K (1990) The role of an invariant tryptophan residue in α-bungarotoxin and cobrotoxin - investigation of active derivatives with the invariant tryptophan replaced by kynurenine. Eur J Biochem 193:567–572

    PubMed  CAS  Google Scholar 

  • Changeux JP (1965) Sur les propriétés allostériques de la L-thréonine désaminases de biosynthèse. VI. Discussion générale. Bull Soc Chim Biol 47:281–300

    PubMed  CAS  Google Scholar 

  • Changeux JP (1981) The acetylcholine receptor: an “allosteric” membrane protein. Harvey Lect 75(85):254

    Google Scholar 

  • Changeux JP (1990) Functional architecture and dynamics of the nicotinic acetylcholine receptor: an allosteric ligand-gated ion channel. In: Fidia research foundation neuroscience award lectures, vol 4. Raven, New York, pp 21–168

    Google Scholar 

  • Changeux JP, Devillers-Thiéry A, Chemouilli P (1984) Acetylcholine receptor: an allosteric protein. Science 225:1335–1345

    PubMed  CAS  Google Scholar 

  • Chatrenet B, Trémeau O, Bontems F, Goeldner MP, Hirth CG, Ménez A (1990) Topography of toxin-acetylcholine receptor complexes by using photoactivatable toxin derivatives. Proc Natl Acad Sci USA 87:3378–3382

    PubMed  CAS  Google Scholar 

  • Chiappinelli VA (1983) Kappa toxin: a probe for neuronal nicotinic receptor in the avian ciliary ganglion. Brain Res 277:9–21

    PubMed  CAS  Google Scholar 

  • Claudio T (1989) Molecular genetics of acetylcholine receptor-channels. In: Glover DM, Hames BC (eds) Frontiers in molecular biology: molecular neurobiology volume. IRL, Oxford, pp 63–142

    Google Scholar 

  • Claudio T (1991) cAMP stimulation of acetylcholine receptor expression is mediated through posttranslational mechanisms. Proc Natl Acad Sci USA 88:854–858

    PubMed  Google Scholar 

  • Claudio T, Ballivet M, Patrick J, Heinemann S (1983) Nucleotide and deduced amino acid sequences of Torpedo californica acetylcholine receptor gammasubunit. Proc Natl Acad Sci USA 80:1111–1115

    PubMed  CAS  Google Scholar 

  • Cockcroft VB, Osguthorpe DJ, Barnard EA, Lunt GG (1990) Modeling of agonist binding to the ligand-gated ion channel superfamily of receptors. Proteins Struct Funct Genet 8:386–397

    PubMed  CAS  Google Scholar 

  • Colquhoun D (1986) On the principles of postsynaptic action of neuromuscular blocking agents. In: Kharkevich DA (ed) Handbook of experimental pharmacology, vol 79. Springer, Berlin Heidelberg New York, pp 59–113

    Google Scholar 

  • Conti-Tronconi BM, Tang F, Diethelm BM, Spencer SR, Reinhardt-Maelicke S, Maelicke A (1990) Mapping of a cholinergic binding site by means of synthetic peptides, monoclonal antibodies and α-bungarotoxin. Biochemistry 29:6221–6230

    PubMed  CAS  Google Scholar 

  • Couturier S, Bertrand D, Matter J-M, Hernandez M-C, Bertrand S, Millar N, Valera S, Barkas T, Ballivet M (1990a) A neuronal nicotinic acetyclholine receptor subunit (a7) is developmentally regulated and forms a homo-oligomeric channel blocked by a-BTX. Neuron 5:847–856

    PubMed  CAS  Google Scholar 

  • Couturier S, Erkman L, Valera S, Rungger D, Bertrand S, Boulter J, Ballivet M, Bertrand D (1990b) α5, α3 and non-α3 - three clustered avian genes encoding neuronal nicotinic acetylcholine receptor-related subunits. J Biol Chem 265:17560–17567

    PubMed  CAS  Google Scholar 

  • Criado M, Hochschwender S, Sarin V, Fox JL, Lindstrom J (1985) Evidence for unpredicted transmembrane domains in acetylcholine receptor subunits. Proc Natl Acad Sci USA 82:2004–2008

    PubMed  CAS  Google Scholar 

  • Criado M, Sarin V, Fox JL, Lindstrom J (1986) Evidence that the acetylcholine binding site is not formed by the sequence alpha 127–143 of the acetyclholine receptor. Biochemistry 25:2839–2846

    PubMed  CAS  Google Scholar 

  • Cruz LJ, Gray WR, Olivera BM (1978) Purification and properties of a myotoxin from Conus geographus venom. Arch Biochem Biophys 190:539

    PubMed  CAS  Google Scholar 

  • Cruz LJ, Gray WR, Yoshikami E, Olivera BM (1985) Conus venoms: a rich source of neuroactive peptides. J Toxicol, Toxin Rev 4:107

    CAS  Google Scholar 

  • Damle VN, Karlin A (1978) Affinity labeling of one of two α-neurotoxin binding sites in acetylcholine receptor from Torpedo californica. Biochemistry 18:2039–2045

    Google Scholar 

  • Deigin V, Ulyashin V, Mikhaleva N, Ivanov V (1982) Total synthesis of neurotoxin II from the Central Asian cobra (Naja naja oxiana) venom. In: Blaha K, Malon P (eds) Peptides 1982. de Gruyter, Berlin, p 276

    Google Scholar 

  • Deneris ES, Connolly J, Rogers SW, Duvoisin R (1991) Pharmacological and functional diversity of neuronal nicotinic acetylcholine receptors. TIPS 12: 34–40

    PubMed  CAS  Google Scholar 

  • Dennis M, Giraudat J, Kotzyba-Hibert F, Goeldner M, Hirth C, Chang JY, Lazure C, Chretién M, Changeux JP (1988) Amino acids of the Torpedo marmorata acetylcholine receptor α-subunit labeled by a photoaffinity ligand for the acetycholine binding site. Biochemistry 27:2346–2357

    PubMed  CAS  Google Scholar 

  • DiPaola M, Czajkowski D, Karlin A (1989) The sidedness of the COOH terminus of the acetylcholine receptor δ subunit. J Biol Chem 264:15457–15463

    PubMed  CAS  Google Scholar 

  • DiPaola M, Kao PN, Karlin A (1990) Mapping the α-subunit photolabeled by the noncompetitive inhibitor [3H]quinaerine azide in the active state of the nicotinic acetylcholine receptor. J Biol Chem 265:11017–11029

    PubMed  CAS  Google Scholar 

  • Dowding AJ, Hall ZW (1987) Monoclonal antibodies specific for each of the two toxin-binding sites of Torpedo acetylcholine receptor. Biochemistry 26:6372–6381

    PubMed  CAS  Google Scholar 

  • Drachman DB (ed) (1987) Myasthenia gravis: biology and treatment. Ann NY Acad Sci 505

    Google Scholar 

  • Dufton MJ, Hider RC (1980) Lethal protein conformations. TIBS 5:52–56

    Google Scholar 

  • Eaker D, Porath J (1967) The amino acid sequence of a neurotoxin from Naja nigricollis venom. Jpn J Microbiol 11:353–355

    Google Scholar 

  • Eldefrawi ME, Eldefrawi AT (1973) Purification and molecular properties of the acetylcholine receptor from Torpedo electroplax. Arch Biochem Biophys 159:362

    PubMed  CAS  Google Scholar 

  • Endo T, Tamiya N (1987) Current view on the structure-function relationship of postsynaptic neurotoxins from snake venoms. Pharmacol Ther 34:403–451

    PubMed  CAS  Google Scholar 

  • Endo T, Inagaki F, Hayashi K, Miyazawa T (1981) Local conformational Transltion of toxin B from Naja naja as studied by nuclear magnetic resonance and circular dichroism. Eur J Biochem 122:541–547

    Google Scholar 

  • Endo T, Nakanishi M, Furukawa S, Joubert FJ, Tamiya N, Hayashi K (1986) Stopped-flow fluorescence studies on binding kinetics of neurotoxins with acetylcholine receptor. Biochemistry 25:395–404

    PubMed  CAS  Google Scholar 

  • Fambrough DM (1979) Control of acetylcholine receptors in skeletal muscle. Physiol Rev 59:165–227

    PubMed  CAS  Google Scholar 

  • Fambrough DM (1983) Biosynthesis and intracellular transport of acetylcholine receptors. Methods Enzymol 96:331–352

    PubMed  CAS  Google Scholar 

  • Finer-Moore J, Stroud RM (1984) Amphipathic analysis and possible formation of the ion channel in an acetylcholine receptor. Proc Natl Acad Sci USA 81:155–159

    PubMed  CAS  Google Scholar 

  • Fornasari D, Chini B, Tarroni P, Clementi F (1990) Molecular cloning of human neuronal nicotinic receptor a3-subunit. Neurosci Lett 111:351–356

    PubMed  CAS  Google Scholar 

  • Fox JW, Elzinga M, Tu AT (1977) Amino acid sequence of a snake neurotoxin from the venom of Lapemis hardwickii and the detection of a sulfhydryl group by laser Raman spectroscopy. FEBS Lett 80:217–220

    PubMed  CAS  Google Scholar 

  • Fraenkel Y, Navon G, Aronheim A, Gershoni JM (1990a) Direct measurement of agonist binding to genetically engineered peptides of the acetylcholine receptor by selective T 1 NMR relaxation. Biochemistry 29:2617–2622

    PubMed  CAS  Google Scholar 

  • Fraenkel Y, Ohana B, Mosckovitz R, Gershoni J, Navon G (1990b) NMR studies of specific binding of acetylcholine, nicotine, gallamine and D-tubocurare to recombinant active site peptides of the nAChR. In: Gershoni J, Hucho F, Silman I (eds) International symposium: The cholinergic synapse, Berlin

    Google Scholar 

  • Fryklund L, Eaker D, Karlsson E (1972) Amino acid sequences of the two principal neurotoxins of Enhydrina schistosa venom. Biochemistry 11:4633–4640

    PubMed  CAS  Google Scholar 

  • Fuchs S (1979) Immunological analysis of acetylcholine receptor. Adv Cytopharmacol 3:279–286

    PubMed  Google Scholar 

  • Fuse N, Tsuchiya T, Nonomura Y, Menez A, Tamiya T (1990) Structure of the snake short-chain neurotoxin, erabutoxin c-precursor gene. Eur J Biochem 193:629–633

    PubMed  CAS  Google Scholar 

  • Galzi JL, Revah F, Black D, Goeldner M, Hirth C, Changeux JP (1990) Identification of a novel amino acid a Tyr 93 within the active site of the acetylcholine receptor by photoaffinity labeling: additional evidence for a three- loop model of the acetylcholine binding site. J Biol Chem 265:10430–10437

    PubMed  CAS  Google Scholar 

  • Gershoni JM, Hawrot E, Lentz TL (1983) Binding of α-bungarotoxin to isolated α-subunit of the acetylcholine receptor of Torpedo californica: quantitative analysis with protein blots. Proc Natl Acad Sci USA 80:4973–4977

    PubMed  CAS  Google Scholar 

  • Goldman D, Deneris E, Luyten W, Kochhar A, Patrick J, Heinemann S (1987) Members of a nicotinic acetylcholine receptor gene family are expressed in different regions of the mammalian central nervous system. Cell 48:965–973

    PubMed  CAS  Google Scholar 

  • Grant GA, Chiappinelli VA (1985) K-bungarotoxin: complete amino acid sequence of a neuronal nicotinic receptor probe. Biochemistry 24:1532–1537

    PubMed  CAS  Google Scholar 

  • Gray WR, Luque A, Olivera BM, Barrett J, Cruz LJ (1983) Conotoxin MI: disulfide bonding and conformational states. J Biol Chem 258:12247–12251

    PubMed  CAS  Google Scholar 

  • Green WN, Ross AF, Claudio T (1991) cAMP stimulation of acetylcholine receptor expression is mediated through posttranslational mechanisms. Proc Natl Acad Sci USA 88:854–858

    PubMed  CAS  Google Scholar 

  • Gregoire J, Rochat H (1977) Amino acid sequences of neurotoxin I and III of the elapidae snake Naja mossambica mossambica. Eur J Biochem 80:283–293

    PubMed  CAS  Google Scholar 

  • Griesmann GE, McCormick DJ, de Aizpurua HJ, Lennon VA (1990) α- Bungarotoxin binds to human acetylcholine receptor α-subunit peptide 185–199 in solution and solid phase but not to peptides 125–147 and 389–409. J Neurochem 54:1541–1547

    PubMed  CAS  Google Scholar 

  • Grishin EV, Sukhikh, AP, Lukyanchuk NN, Slobodyan LN, Lipkin VM, Ovchinnikov YA, Sorokin VM (1973) Amino acid sequence of neurotoxin II from Naja naja oxiana venom. FEBS Lett 36:77–78

    PubMed  CAS  Google Scholar 

  • Grishin EV, Sukhikh AP, Slobodyan LN, Ovchinnikov YA, Sorokin VM (1974) Amino acid sequence of neurotoxin I from Naja naja oxiana venom. FEBS Lett 45:118–121

    PubMed  CAS  Google Scholar 

  • Grünhagen HH, Changeux JP (1976) Studies on the electrogenic action of acetylcholine with Torpedo marmorata electric organ. Quinacrine: a fluorescent probe for the conformational Transltions of the cholinergic receptor protein in its membrane bound state. J Mol Biol 106:497–516

    PubMed  Google Scholar 

  • Guy HR, Hucho F (1987) The ion channel of the nicotinic acetylcholine receptor. TINS 10:318–321

    CAS  Google Scholar 

  • Haggerty JG, Froehner SC (1981) Restoration of 125I-a-bungarotoxin binding activity to the α-subunit of Torpedo acetylcholine receptor isolated by gel electrophoresis in sodium dodecyl sulfate. J Biol Chem 256:8294–8297

    PubMed  CAS  Google Scholar 

  • Halpert J, Fohlman J, Eaker D (1979) Amino acid sequence of a postsynaptic neurotoxin from the venom of the Australian tiger snake Notechis scutatus scutatus. Biochimie 61:719–723

    PubMed  CAS  Google Scholar 

  • Hashimoto K, Uchida S, Yoshida H, Nishiuchi Y, Sakakibara S, Yukari K (1985) Structure-activity relations of conotoxins at the neuromuscular junction. Eur J Pharmacol 118:351

    PubMed  CAS  Google Scholar 

  • Hauert J, Maire M, Sussmann A, Bargetzi JP (1974) The major lethal neurotoxin of the venom of Naja naja philippinensis. Int J Pept Protein Res 6:201–222

    PubMed  CAS  Google Scholar 

  • Heidmann T, Oswald RE, Changeux JP (1983) Multiple sites of action for noncompetitive blockers on acetylcholine receptor-rich membrane fragments from Torpedo marmorata. Biochemistry 22:3112–3127

    PubMed  CAS  Google Scholar 

  • Hider RC (1985) A proposal for the structure of conotoxin: a potent antagonist of the nicotinic acetylcholine receptor. FEBS Lett 184:181–184

    PubMed  CAS  Google Scholar 

  • Hider RC, Drake AF, Inagaki F, Williams RJP, Endo T, Miyazawa T (1982) Molecular conformation of α-cobratoxin as studied by nuclear magnetic resonance and circular dichroism. J Mol Biol 158:275–291

    PubMed  CAS  Google Scholar 

  • Hieber V, Bouchey J, Agranoff B, Goldman D (1990) Nucleotide and deduced amino acid sequence of the goldfish neural nicotinic acetylcholine receptor a-3 subunit. Nuclcic Acids Res 18:5293

    CAS  Google Scholar 

  • Hucho F (1979) Photoaffinity derivatives of α-bungarotoxin and α-Naja naja siamensis toxin. FEBS Lett 103:27–32

    PubMed  CAS  Google Scholar 

  • Hucho F (1986) The nicotinic acetylcholine receptor and its ion channel. Review. Eur J Biochem 158:211–226

    PubMed  CAS  Google Scholar 

  • Hucho F, Hilgenfeld R (1989) The selectivity filter of a ligand-gated ion channel - the helix-M2 model of the ion channel of the nicotinic acetylcholine receptor. FEBS Lett 257:17–23

    PubMed  CAS  Google Scholar 

  • Hucho F, Ovchinnikov YA (1983) Toxins as tools in neurochemistry. de Gruyter, Berlin

    Google Scholar 

  • Hucho F, Oberthür W, Lottspeich F (1986) The ion channel of the nicotinic acetylcholine receptor is formed by the homologous helices M II of the receptor subunits. FEBS Lett 205:137–142

    PubMed  CAS  Google Scholar 

  • Huganir RL, Greengard P (1983) cAMP-dependent protein kinase phosphorylates the nicotinic acetylcholine receptor. Proc Natl Acad Sci USA 80:1130–1134

    PubMed  CAS  Google Scholar 

  • Huganir RL, Greengard P (1987) Regulation of receptor function by protein phosphorylation. TIPS 8:472–477

    CAS  Google Scholar 

  • Huganir RL, Schell MA, Racker E (1979) Reconstitution of the purified acetylcholine receptor from Torpedo californica. FEBS Lett 108:155–160

    PubMed  CAS  Google Scholar 

  • Huganir RL, Miles K, Greengard P (1984) Phosphorylation of the nicotinic acetylcholine receptor by an endogenous tyrosine-specific protein kinase. Proc Natl Acad Sci USA 81:6968–6972

    PubMed  CAS  Google Scholar 

  • Hunkapiller MW, Strader CD, Hood L, Raftery MA (1979) Amino terminal amino acid sequence of the major polypeptide subunit of Torpedo californica acetylcholine receptor. Biochem Biophys Res Commun 91:164–169

    PubMed  CAS  Google Scholar 

  • Imoto K, Methfessel C, Sakmann B, Mishina M, Konno T, Nakai J, Bujo H, Fujita Y, Numa S (1986) Location of a delta-subunit region determining transport through the acetylcholine receptor channel. Nature 324:670–674

    PubMed  CAS  Google Scholar 

  • Imoto K, Busch C, Sakmann B, Mishina M, Konno T, Nakai J, Bujo H, Mori Y, Fukuda K, Numa S (1988) Rings of negatively-charged amino acids determine the acetylcholine receptor channel conductance. Nature 335:645–648

    PubMed  CAS  Google Scholar 

  • Isenberg KE, Mudd J, Shah V, Merlie JP (1986) Nucleotide sequence of the mouse muscle nicotinic acetylcholine receptor a subunit. Nucleic Acids Res 14:5111

    PubMed  CAS  Google Scholar 

  • Johnson DA, Voet JG, Taylor P (1984) Fluorescence energy transfer between cobra α-toxin molecules bound to the acetylcholine receptor. J Biol Chem 259:5717–5725

    PubMed  CAS  Google Scholar 

  • Joubert FJ (1973) The amino acid sequences of two toxins from Ophiophagus hannah (King cobra) venom. Biochim Biophys Acta 317:85–98

    PubMed  CAS  Google Scholar 

  • Joubert FJ (1975) The amino acid sequences of three toxins (CM-10, CM-12, and CM-14) from Naja haje annulifera (Egyptian cobra) venom. Hoppe Seylers Z Physiol Chem 356:53–72

    CAS  Google Scholar 

  • Joubert FJ, Taljaard N (1978) Purification, some properties and the primary structures of three reduced and S-carboxymethylated toxins (CM-5, CM-6 and CM-10a) from Naja haje haje (Egyptian cobra) venom. Biochim Biophys Acta 579:1–8

    Google Scholar 

  • Juillerat MA, Schwendimann B, Hauert J, Fulpius BW, Bargetzi JP (1982) Specific binding to isolated acetylcholine receptor of a synthetic peptide duplicating the sequence of the presumed active center of a lethal toxin from snake venom. J Biol Chem 257:2901–2907

    PubMed  CAS  Google Scholar 

  • Kao PN, Karlin A (1986) Acetylcholine receptor binding site contains a disulfide cross-link between adjacent half-cystinyl residues. J Biol Chem 261:8085–8088

    PubMed  CAS  Google Scholar 

  • Kao PN, Dwork AJ, Kaldany RRJ, Silver ML, Wideman J, Stein S, Karlin A (1984) Identification of the alpha-subunit half-cystine specifically labeled by an affinity reagent for the acetylcholine receptor binding site. J Biol Chem 259:11662–11665

    PubMed  CAS  Google Scholar 

  • Karlin A (1980) Molecular properties of nicotinic acetylcholine receptors. Cell Surf Rev 6:191–260

    CAS  Google Scholar 

  • Karlin A (1991) Explorations of the nicotinic acetylcholine receptor. Harvey Lect 86

    Google Scholar 

  • Karlin A, Cowburn DA (1973) The affinity labelling of partially purified acetylcholine receptor from electric tissue of Electrophorus. Proc Natl Acad Sci USA 70:3636–3640

    PubMed  CAS  Google Scholar 

  • Karlsson E (1979) Chemistry of protein toxins in snake venoms. In: Lee CY (ed) Snake venoms. Springer, Berlin Heidelberg New York, pp 159–212 (Handbook of experimental pharmacology, vol 2)

    Google Scholar 

  • Karlsson E, Eaker DL, Ponterius G (1972) Modification of amino groups in Naja naja neurotoxin and the preparation of radioactive derivatives. Biochim Biophys Acta 257:235–248

    PubMed  CAS  Google Scholar 

  • Kim HS, Tamiya N (1981a) Isolation, properties and amino acid sequence of a long-chain neurotoxin, Acanthophis antarcticus b, from the venom of an Australian snake (the common-death-adder, Acanthophis antarcticus). Biochem J 193:899–906

    PubMed  CAS  Google Scholar 

  • Kim HS, Tamiya N (1981b) The amino acid sequence and position of the free thiol group of a short-chain neurotoxin from common-death-adder (Acanthophis antarcticus) venom. Biochem J 199:211–219

    PubMed  CAS  Google Scholar 

  • Kim HS, Tamiya N (1982) Amino acid sequences of two novel long-chain neurotoxins from the venom of the sea snake Laticauda colubrina. Biochem J 207:215–223

    PubMed  CAS  Google Scholar 

  • Kopeyan C, Miranda F, Rochat H (1975) Amino-acid sequence of toxin III of Naja haje. Eur J Biochem 58:117–122

    PubMed  CAS  Google Scholar 

  • Kunath W, Giersig M, Hucho F (1989) The electron microscopy of the nicotinic acetylcholine receptor. Electron Microsc Rev 2:349–366

    PubMed  CAS  Google Scholar 

  • Lauffer L, Hucho F (1982) Triphenylmethylphosphonium is an ion channel ligand of the nicotinic acetylcholine receptor. Proc Natl Acad Sci USA 79:2406–2409

    PubMed  CAS  Google Scholar 

  • Lentz TL, Burrage TG, Smith AL, Crick J, Tignor GH (1982) Is the acetylcholine receptor a rabies virus receptor? Science 215:182–184

    PubMed  CAS  Google Scholar 

  • Lester H, Changeux JP, Sheridan RE (1975) Conductance increases produced by bath application of cholinergic agonists to Electrophorus electroplaques. J Gen Physiol 65:797–816

    PubMed  CAS  Google Scholar 

  • Lindstrom J (1980) Probing nicotinic acetylcholine receptors with monoclonal antibodies. TINS 9:401–407

    Google Scholar 

  • Lindstrom J, Shelton D, Fujii Y (1988) Myasthenia gravis. Adv Immunol 42: 233–284

    PubMed  CAS  Google Scholar 

  • Lindstrom J, Patrick J (1974) Purification of the acetylcholine receptor by affinity chromatography. In: Bennett MVL (ed) Synaptic transmission and neuronal interaction. Raven, New York, pp 191–216

    Google Scholar 

  • Liu CS, Blackwell RQ (1974) Hydrophitoxin b from Hydrophis cyanocinctus venom. Toxicon 12:543–546

    PubMed  CAS  Google Scholar 

  • Love RA, Stroud RM (1986) The crystal structure of α-bungarotoxin at 2.5 A resolution: relation to solution structure and binding to acetylcholine receptor. Protein Eng 1:37–46

    PubMed  CAS  Google Scholar 

  • Low BW, Preston HS, Sato A, Rosen LS, Searl JE, Rudko AD, Richardson JR (1976) Three-dimensional structure of erabutoxin b neurotoxic protein: inhibitor of acetylcholine receptor. Proc Natl Acad Sci USA 73:2991–2994

    PubMed  CAS  Google Scholar 

  • Maeda N, Tamiya N (1974) The primary structure of the toxin Laticauda semifasciata III, a weak and reversibly acting neurotoxin from the venom of a sea snake, Laticauda semifasciata. Biochem J 141:389–400

    PubMed  CAS  Google Scholar 

  • Maeda N, Tamiya N (1976) Isolation, properties and amino acid sequences of three neurotoxins from the venom of a sea snake. Aipysurus laevis. Biochem J 153:79–87

    PubMed  CAS  Google Scholar 

  • Naeda N, Tamiya N (1978) Three neurotoxins from the venom of a sea snake, Astrotia stokesii, including two long-chain neurotoxic proteins with amidated C-terminal. Biochem J 175:507–517

    Google Scholar 

  • Maelicke A (1984) Biochemical aspects of cholinergic excitation. Angew Chem Int Ed Engl 23:195–221

    Google Scholar 

  • Maelicke A (1988) Structure and function of the nicotinic acetylcholine receptor. In: Whittaker VP (ed) Handbook of experimental pharmacology, vol 86. Springer, Berlin Heidelberg New York, pp 267–313

    Google Scholar 

  • Maelicke A, Fulpius BW, Klett RP, Reich E (1977) Acetylcholine receptor: responses to drug binding. J Biol Chem 252:4811–4830

    PubMed  CAS  Google Scholar 

  • Maelicke A, Plümer-Wilk R, Fels G, Spencer SR, Engelhard M, Veltel D, Conti- Tronconi BM (1989) The limited sequence specificity of anti-peptide antibodies may introduce ambiguity in topological studies. In: Maelicke A (ed) Molecular biology of neuroreceptors and ion channels. Springer, Berlin Heidelberg New York, pp 321–326 (NATO ASI series, vol 32)

    Google Scholar 

  • Marshall J, Buckingham SD, Shingia R, Lunt GG, Goosey MW, Darlison MG, Sattelle DB, Barnard EA (1990) Sequence and functional expression of a single α-subunit of an insect nAChR. EMBO J 9:4391–4398

    PubMed  CAS  Google Scholar 

  • Martin BM, Chibber BA, Maelicke A (1983a) The sites of neurotoxicity in α- cobratoxin. J Biol Chem 258:8714–8722

    PubMed  CAS  Google Scholar 

  • Martin BM, Chibber BA, Maelicke A (1983b) Toxic peptides obtained by enzymatic cleavage of α-cobratoxin. Toxicon [Suppl]3:273–276

    Google Scholar 

  • McCormick DJ, Atassi MZ (1984) Localization and synthesis of the acetylcholine- binding site in the alpha-chain of the Torpedo californica acetylcholine receptor. Biochem J 224:995–1000

    PubMed  CAS  Google Scholar 

  • McIntosh M, Cruz LJ, Hunkapiller MW, Gray WR, Olivera BM (1982) Isolation and structure of a peptide toxin from the marine snail Conus magus. Arch Biochem Biophys 218:329

    PubMed  CAS  Google Scholar 

  • Mebs D Hucho F (1990) Toxins acting on ion channels and synapses. In: Shier WT, Mebs D (eds) Handbook of toxicology. Dekker, New York, pp 493–600

    Google Scholar 

  • Mebs D, Narita K, Iwanaga S, Samejima Y, Lee CY (1972) Purification, properties and amino acid sequence of α-bungarotoxin from the venom of Bungarus multicinctus. Hoppe Seylers Z Physiol Chem 353:243–262

    PubMed  CAS  Google Scholar 

  • Ménez A, Bouet F, Guschlbauer W, Fromageot P (1980) Refolding of reduced short neurotoxins: circular dichroism analysis. Biochemistry 19:4166–4172

    PubMed  Google Scholar 

  • Meunier JC, Olsen RW, Menez A, Fromageot P, Boquet P, Changeux JP (1972) Studies on the cholinergic receptor protein of Electrophorus electricus. II. Some physical properties of the receptor protein revealed by a tritiated alpha-toxin from Naja nigricollis venom. Biochemistry 11:1200–1210

    PubMed  CAS  Google Scholar 

  • Meunier JC, Sealock R, Olsen R, Changeux JP (1974) Purification and properties of the cholinergic receptor from Electrophorus electricus electric tissue. Eur J Biochem 45:371–394

    PubMed  CAS  Google Scholar 

  • Mishina M, Tobimatsu T, Imoto K, Tanaka K, Fujita Y, Fukuda K, Kurasaki M, Takahashi H, Morimoto Y, Hirose T, Inayama S, Takahashi T, Kuno M, Numa S (1985) Location of functional regions of acetylcholine receptor α-subunit by site-directed mutagenesis. Nature 313:364–369

    PubMed  CAS  Google Scholar 

  • Mishina M, Takai T, Imoto K, Noda M, Takahashi T, Numa S, Methfessel C, Sakmann B (1986) Molecular distinction between fetal and adult forms of muscle acetylcholine receptor. Nature 321:406–411

    PubMed  CAS  Google Scholar 

  • Moore WM, Holladay LA, Puett D, Brady RN (1974) On the conformation of the acetylcholine receptor protein from Torpedo riobiliana. FEBS Lett 45:145–149

    PubMed  CAS  Google Scholar 

  • Mulac-Hericevic B, Atassi MZ (1986) Segment alpha-182–198 Torpedo californica acetylcholine receptor contains a second toxin-binding region and binds antireceptor antibodies. FEBS Lett 199:68–74

    Google Scholar 

  • Nachmansohn D (1959) Chemical and molecular basis of nerve activity. Academic, New York, p 235

    Google Scholar 

  • Nakai K, Sasaki T, Hayashi K (1971) Amino acid sequence of toxin A from the venom of the Indian cobra (Naja naja). Biochem Biophys Res Commun 44:893–897

    PubMed  CAS  Google Scholar 

  • Nan-Qin L, Yao-Shi Z, Jian-Feng M, Wan-Yü W, Chang-Jiu Y, Zu-Liang X (1984) Amino acid sequence of the neurotoxin (CM-9) from the snake venom of Quangxi kind cobra (in Chinese). Acta Biochim Biophys Sin 16:592–596

    Google Scholar 

  • Naumann D, Schultz C, Hucho F (1990) Probing acetylcholine receptor secondary structure by Fourier transform infrared spectroscopy. In: Synaptic channels and membrane receptors. Abstracts of the 10th International Biophysics Congress “Biophysics for the 90’s”, July/August, Vancouver

    Google Scholar 

  • Nef P, Oneyser C, Alliod C, Couturier S, Ballivet M (1988) Genes expressed in the brain define three distinct neuronal nicotinic acetylcholine receptors. EMBO J 7:595–601

    PubMed  CAS  Google Scholar 

  • Neher E, Steinbach JH (1978) Local anaesthetics Translently block currents through single acetylcholine receptor channels. J Physiol (Lond) 277:153–176

    CAS  Google Scholar 

  • Neubig RR, Cohen JB (1979) Equilibrium binding of (3H) D-tubocurarine and ]3H] acetylcholine by Torpedo postsynaptic membranes: stoichiometry and ligand interactions. Biochemistry 18:5464–5475

    PubMed  CAS  Google Scholar 

  • Neumann D, Gershoni JM, Fridkin M, Fuchs S (1985) Antibodies to synthetic peptides as probes for the binding site on the alpha-subunit of the acetylcholine receptor. Proc Natl Acad Sci USA 82:3490–3493

    PubMed  CAS  Google Scholar 

  • Neumann D, Barchan D, Safran A, Gershoni JM, Fuchs S (1986) Mapping of the alpha-bungarotoxin binding site within the α-subunit of the acetylcholine receptor. Proc Natl Acad Sci USA 83:3008–3011

    PubMed  CAS  Google Scholar 

  • Neumann D, Barchan D, Horowitz M, Kochva E, Fuchs S (1989) Snake acetylcholine receptor: cloning of the domain containing the four extracellular cysteines of the a subunit. Proc Natl Acad Sci USA 86:7255–7259

    PubMed  CAS  Google Scholar 

  • Noda M, Takahashi H, Tanabe T, Toyosato M, Furutani Y, Hirose T, Asai M, Inayama S, Miyata T, Numa S (1982) Primary structure of alpha-subunit precursor of Torpedo californica acetylcholine receptor deduced from cDNA sequence. Nature 299:793–797

    PubMed  CAS  Google Scholar 

  • Noda M, Takahashi H, Tanabe T, Toyosato M, Kikyotani S, Hirose T, Asai M, Takashima H, Inayama S, Miyata T, Numa S (1983a) Primary structures of beta and delta-subunit precursors of Torpedo californica acetylcholine receptor deduced from cDNA sequences. Nature 301:251–255

    PubMed  CAS  Google Scholar 

  • Noda M, Takahashi H, Tanabe T, Toyosato M, Kikyotani S, Furutani Y, Hirose T, Takashima H, Inayama S, Miyata T, Numa S (1983b) Structural homology of Torpedo californica acetylcholine receptor subunits. Nature 302:528–532

    PubMed  CAS  Google Scholar 

  • Noda M, Furutani Y, Takahashi H, Toyosato M, Tanabe T, Shimizu S, Kikyotani S, Kayano T, Hirose T, Inayama S, Numa S (1983c) Cloning and sequence analysis of calf cDNA and human genomic cDNA encoding α-subunit precursor of muscle AChR subunits. Nature 305:818–823

    PubMed  CAS  Google Scholar 

  • Nomoto H, Takahashi N, Nagaki Y, Endo S, Arata Y, Hayashi K (1986) Carbohydrate structures of acetylcholine receptor from Torpedo californica and distribution of oligosaccharides among the subunits. Eur J Biochem 157:133–142

    Google Scholar 

  • Ohta M, Sasaki T, Hayashi K (1976) The primary structure of toxin B from the venom of the Indian cobra Naja naja. FEBS Lett 71:161–166

    CAS  Google Scholar 

  • Ohta M, Sasaki T, Hayashi K (1981a) The primary structure of toxin C from the venom of the Indian cobra (Naja naja). Chem Pharm Bull 29:1458–1462

    CAS  Google Scholar 

  • Ohta M, Sasaki T, Hayashi K (1981b) The amino acid sequence of toxin D isolated from the venom of Indian cobra (Naja naja). Chem Pharm Bull (Tokyo) 29:1458–1462

    CAS  Google Scholar 

  • Olivera BM, Gray WR, Zeikus R, McIntosh JM, Varga J, Rivier J, deSantos V, Cruz LJ (1985) Peptide neurotoxins from fish-hunting cone snails. Science 230:1338–1343

    PubMed  CAS  Google Scholar 

  • Olsen R, Meunier JC, Changeux JP (1972) Progress in purification of the cholinergic receptor protein from Electrophorus electricus by affinity chromatography. FEBS Lett 28:96–100

    PubMed  CAS  Google Scholar 

  • Pearce SF, Hawrot E (1990) Intrinsic fluorescence of binding-site fragments of the nicotinic acetylcholine receptor: perturbations produced upon binding a- bungarotoxin. Biochemistry 29:10649–10659

    PubMed  CAS  Google Scholar 

  • Pedersen SE, Cohen JB (1988) Photoaffinity labelling of the high and low affinity d-tubocurare binding sites of the nicotinic acetylcholine receptor (AChR) by [3H]d-tubocurare (d-Tc). Biophys J 53:351a

    Google Scholar 

  • Pedersen SE, Cohen JB (1990) d-Tubocurarine binding sites are located at α-gamma and α-β subunit interfaces of the nicotinic acetylcholine receptor. Proc Natl Acad Sci USA 87:2785–2789

    PubMed  CAS  Google Scholar 

  • Popot JL, Changeux JP (1984) Nicotinic receptor of acetylcholine: structure of an oligomeric integral membrane protein. Physiol Rev 64:1162–1239

    PubMed  CAS  Google Scholar 

  • Popot JL, Cartaud J, Changeux JP (1981) Reconstitution of a functional acetylcholine receptor: incorporation into artificial lipid vesicles and pharmacology of the agonist-controlled permeability changes. Eur J Biochem 118:213–214

    Google Scholar 

  • Poulter L, Earnest JP, Stroud RM, Burlingame AL (1989) Structure, oligosaccharide structures and posttranslationally modified sites of the nicotinic acetylcholine receptor. Proc Natl Acad Sci USA 86:6645–6649

    PubMed  CAS  Google Scholar 

  • Prinz H, Maelicke A (1983a) Interaction of cholinergic ligands with the purified acetylcholine receptor protein. I. Equilibrium binding studies. J Biol Chem 258:10263–10271

    PubMed  CAS  Google Scholar 

  • Prinz H, Maelicke A (1983b) Interaction of cholinergic ligands with the purified acetylcholine receptor protein. II. Kinetic studies. J Biol Chem 258:10273–10282

    PubMed  CAS  Google Scholar 

  • Reynolds JA, Karlin A (1978) Molecular weight in detergent solution of acetylcholine receptor from Torpedo californica. Biochemistry 17:2035–2038

    PubMed  CAS  Google Scholar 

  • Rousselet A, Fauer G, Boulain J-C, Ménez A (1984) The interaction of neurotoxin derivatives with either acetylcholine receptor or a monoclonal antibody: an electron-spin-resonance study. Eur J Biochem 140:31–37

    PubMed  CAS  Google Scholar 

  • Ruan K-H, Spurling J, Quiocho FA, Atassi MZ (1990) Acetylcholine receptor-α- bungarotoxin interactions: determination of the region-to-region contacts by peptide-peptide interactions and molecular modeling of the receptor cavity. Proc Natl Acad Sci USA 87:6156–6160

    PubMed  CAS  Google Scholar 

  • Rydén L, Gabel D, Eaker D (1973) A model of the three-dimensional structure of snake venom neurotoxins based on chemical evidence. Int J Pept Protein Res 5:261–273

    PubMed  Google Scholar 

  • Safran A, Sagi-Eisenberg R, Neumann D, Fuchs S (1987) Phosphorylation of the acetylcholine receptor by protein kinase C and identification of the phosphorylation site within the receptor delta subunit. J Biol Chem 262:10506–10510

    PubMed  CAS  Google Scholar 

  • Sakmann B, Neher E (1984) Patch-clamp techniques for studying ionic channels in excitable membranes. Annu Rev Physiol 46:455–472

    PubMed  CAS  Google Scholar 

  • Sato S, Tamiya N (1971) The amino acid sequences of erabutoxins, neurotoxic proteins of sea-snake (Laticauda semifasciata) venom. Biochem J 122:453–461

    PubMed  CAS  Google Scholar 

  • Sawruk E, Schloss P, Betz H, Schmitt B (1990) Heterogeneity of Drosophila nicotinic acetylcholine receptors: SAD, a novel developmentally regulated α- subunit. EMBO J 9:2671–2677

    PubMed  CAS  Google Scholar 

  • Schiebler W, Hucho F (1978) Membranes rich in acetylcholine receptor: characterization and reconstitution to excitable membranes from exogenous lipids. Eur J Biochem 88:55–63

    Google Scholar 

  • Schmidt TJ, Raftery MA (1972) Use of affinity chromatography for acetylcholine receptor purification. Biochem Biophys Res Commun 49:572

    PubMed  CAS  Google Scholar 

  • Schmidt TJ, Raftery MA (1973) Purification of acetylcholine receptors from Torpedo californica electroplax by affinity chromatography. Biochemistry 49:572

    Google Scholar 

  • Schoepfer R, Conroy W, Whiting P, Gore M, Lindstrom J (1990) Brain α- bungarotoxin binding protein cDNAs and MAbs reveal subtypes of this branch of the ligand-gated ion channel gene superfamily. Neuron 5:35–48

    PubMed  CAS  Google Scholar 

  • Schofield GG, Witkop B, Warnick JE, Albuquerque EX (1981) Differentiation of the open and closed states of the ionic channels of nicotinic acetylcholine receptors by tricyclic antidepressants. Proc Natl Acad Sci USA 89:5240–5244

    Google Scholar 

  • Schröder W, Covey T, Hucho F (1990) Identification of phosphopeptides by mass spectrometry. FEBS Lett 273:31–35

    Google Scholar 

  • Schröder W, Meyer HE, Buchner K, Bayer H, Hucho F (1991) Phosphorylation sites of the nicotinic acetylcholine receptor - a novel site detected in position delta- S362. Biochemistry (in press)

    Google Scholar 

  • Shipolini RA, Bailey GS, Banks BEC (1974) The separation of a neurotoxin from the venom of Naja melanoleuca and the primary sequence determination. Eur J Biochem 42:203–211

    PubMed  CAS  Google Scholar 

  • Smart L, Meyers H-W, Hilgenfeld R, Saenger W, Maelicke A (1984) A structural model for the ligand-binding sites at the nicotinic acetylcholine receptor. FEBS Lett 178:64–68

    CAS  Google Scholar 

  • Stroud RM, McCarthy MP, Schuster M (1990) Nicotinic acetylcholine receptor superfamily of ligand-gated ion channels. Biochemistry 29:11010–11023

    Google Scholar 

  • Strydom AJC (1972) Snake venom toxins: the amino acid sequences of two toxins from Dendroaspis polylepis polylepis (black mamba) venom. J Biol Chem 247:4029–4042

    PubMed  CAS  Google Scholar 

  • Strydom AJC (1973a) Snake venom toxins: the amino acid sequences of two toxins from Dendroaspis jamesoni kaimosae (Jameson’s mamba) venom. Biochim Biophys Acta 328:491–509

    PubMed  CAS  Google Scholar 

  • Strydom AJC (1973b) Studies on the toxins of Dendroaspis polylepis (black mamba) venom. Dissertation, University of South Africa, Pretoria

    Google Scholar 

  • Strydom AJC, Botes DP (1971) Snake venom toxins: purification, properties and complete amino acid sequences of two toxins from ringhals (Hemachatus haemachatus) venom. J Biol Chem 246:1341–1349

    PubMed  CAS  Google Scholar 

  • Strydom DJ, Haylett T (1977) Snake venom toxins: the amino acid sequence of toxin Vn2 of Dendroaspis polylepis polylepis (black mamba) venom. S Afr J Chem 30:40–48

    CAS  Google Scholar 

  • Takai T, Noda M, Mishina M, Shimizu S, Furutani Y, Kayano T, Ikeda T, Kubo T, Takahashi H, Takahashi T, Kuno M, Numa S (1985) Cloning, sequencing and expression of cDNA for a novel subunit of acetylcholine receptor from calf muscle. Nature 315:761–764

    PubMed  CAS  Google Scholar 

  • Tamiya N, Abe H (1972) The isolation, properties and amino acid sequences of erabutoxin c, a minor neurotoxic component of the venom of a sea snake Laticauda semifasciata. Biochem J 130:547–555

    PubMed  CAS  Google Scholar 

  • Tamiya N, Maeda N, Cogger HG (1983a) Neurotoxins from the venoms of the sea snakes Hydrophis ornatus and Hydrophis lapemoides. Biochem J 213:31–38

    PubMed  CAS  Google Scholar 

  • Tamiya N, Sato A, Kim HS, Teruuchi T, Tkasaki C, Ishikawa Y, Guinea ML, McCoy M, Heatwole H, Cogger HG (1983b) Neurotoxins of sea snakes of the genus Laticauda. Toxicon [Suppl]3:445–447

    Google Scholar 

  • Tamiya T, Lamouroux A, Julien J-F, Grima B, Mallet J, Fromageot P, Mènez A (1985) Cloning and sequence analysis of the cDNA encoding a snake neurotoxin precursor. Biochimie 67:185–189

    PubMed  CAS  Google Scholar 

  • Taylor P (1990a) Cholinergic agonists. In: Goodman Gilman A, Rall TW, Nies AS, Taylor P (eds) The pharmacological basis of therapeutics, 8th edn. Pergamon, New York, p 122

    Google Scholar 

  • Taylor P (1990b) Agents acting at the neuromuscular junction and autonomic ganglia. In: Goodman Gilman A, Rall TW, Nies AS, Taylor P (eds) The pharmacological basis of therapeutics, 8th edn. Pergamon, New York, p 166

    Google Scholar 

  • Toyoshima C, Unwin N (1988) Ion channel of acetylcholine receptor reconstructed from images of postsynaptic membranes. Nature 336:214–251

    Google Scholar 

  • Tsernoglou D, Petsko GA (1976) The crystal structure of a postsynaptic neurotoxin from sea snake at 2.2 A resolution. FEBS Lett 68:1–4

    PubMed  CAS  Google Scholar 

  • Tsetlin VI, Karlsson E, Arseniev AS, Utkin YN, Surin AM, Pashkov VS, Pluzhnikov KA, Ivanov VT, Bystrov VF, Ovchinnikov YA (1979) EPR and fluorescence study of interaction of Naja naja oxiana neurotoxin II and its derivatives with acetylcholine receptor protein from Torpedo marmorata. FEBS Lett 106:47–52

    PubMed  CAS  Google Scholar 

  • Tsetlin VI, Karlsson E, Utkin YN, Pluzhnikov KA, Arseniev AS, Surin AM, Kondakov VV, Bystrov VF, Ivanov VT, Ovchinnikov YA (1982) Interacting surfaces of neurotoxins and acetylcholine receptor. Toxicon 20:83–93

    PubMed  CAS  Google Scholar 

  • Tsetlin VI, Pluzhnikov KA, Karelin A, Ivanov V (1983) Acetylcholine receptor interaction with the neurotoxin II photoactivable derivatives. In: Hucho F, Ovchinnikov YA (eds) Toxins as tools in neurochemistry. de Gruyter, Berlin

    Google Scholar 

  • Tsetlin VI, Pluzhnikov KA, Karelin AA, Karlsson E, Ivanov VT (1984) Mutual disposition of the bound neurotoxins and acetylcholine receptor subunits (in Russian). Bioorg Khim 10:176–187

    PubMed  CAS  Google Scholar 

  • Tsetlin VI, Alyonycheva TN, Kuryatov AB, Pluzhnikov KA (1987) Selective labeling study on topography of acetylcholine receptor and bacteriorhodopsin. In: Ovchinnikov YA, Hucho F (eds) Receptors and ion channels. de Gruyter, Berlin

    Google Scholar 

  • Tzartos SJ, Changeux JP (1983a) High affinity binding of alpha-bungarotoxin to the purified alpha-subunit and its 27.000 dalton proteolytic peptide from Torpedo marmorata acetylcholine receptor. Requirement for sodium dodecyl sulfate. EMBO J 2:381–387

    PubMed  CAS  Google Scholar 

  • Tzartos SJ, Changeux JP (1983b) Lipid-dependent recovery of alpha-bungarotoxin and monoclonal antibody binding to the purified alpha-subunit from Torpedo marmorata acetylcholine receptor. J Biol Chem 259:11512–11519

    Google Scholar 

  • Unwin N, Toyoshima C, Kubalek E (1988) Arrangement of the acetylcholine receptor subunits in the resting and desensitized states, determined by cryoelectron microscopy of crystallized Torpedo postsynaptic membranes. J Cell Biol 107:1123–1138

    PubMed  CAS  Google Scholar 

  • Vandlen RL, Wu WC-S, Eisenach JC, Raftery MA (1979) Studies of the composition of purified Torpedo californica acetylcholine receptor and of its subunits. Biochemistry 10:1845–1854

    Google Scholar 

  • Vijayaraghavan S, Schmid HA, Halvorsen SW, Berg DK (1990) Cyclic AMP- dependent phosphorylation of a neuronal acetylcholine receptor α-type subunit. J Neurosci 10:3255–3262

    PubMed  CAS  Google Scholar 

  • Wada K, Ballivet M, Boulter J, Connolly J, Wada E, Deneris ES, Swanson LW, Heinemann S, Patrick J (1988) Functional expression of a new pharmacological subtype of brain nicotinic acetylcholine receptor. Science 240:330–334

    PubMed  CAS  Google Scholar 

  • Walkinshaw MD, Saenger W, Maelicke A (1980) Three-dimensional structure of the “long” Torpedo californica acetylcholine receptor in reconstituted membranes. Biochemistry 21:5384–5389

    Google Scholar 

  • Wang CL, Liu CS, Hung YO, Blackwell RQ (1976) Amino acid sequence of pelamitoxin a, the main neurotoxin of the sea snake, Pelamis platurus. Toxicon 14:459–466

    PubMed  CAS  Google Scholar 

  • Watters D, Maelicke A (1983) Organization of ligand binding sites at the acetyclholine receptor: a study with monoclonal antibodies. Biochemistry 22:1811–1819

    PubMed  CAS  Google Scholar 

  • Wilson PT, Gershoni JM, Hawrot E, Lentz TL (1984) Binding of alpha- bungarotoxin to proteolytic fragments of the alpha-subunit of Torpedo acetylcholine receptor analyzed by protein transfer on positively charged membrane filters. Proc Natl Acad Sci USA 81:2553–2557

    PubMed  CAS  Google Scholar 

  • Wilson PT, Lentz TL, Hawrot E (1985) Determination of the primary amino acid sequence specifying the α-bungarotoxin binding site on the α-subunit of the acetylcholine receptor from Torpedo californica. Proc Natl Acad Sci USA 82:8790–8794

    PubMed  CAS  Google Scholar 

  • Witzemann V, Muchmore D, Raftery MA (1979) Affinity-directed cross-linking of membrane-bound acetylcholine receptor polypeptides with photolabile α- bungarotoxin derivatives. Biochemistry 18:5511–5518

    PubMed  CAS  Google Scholar 

  • Witzemann V, Stein E, Barg B, Konno T, Koenen M, Kues W, Criado M, Hofmann M, Sakmann B (1990) Primary structure and functional expression of the α-, β-, γ- and ε-subunits of the acetylcholine receptor from rat muscle. Eur J Biochem 194:437–448

    PubMed  CAS  Google Scholar 

  • Yang CC (1965) Crystallization and properties of cobrotoxin from Formosan cobra venom. J Biol Chem 240:1616–1618

    PubMed  CAS  Google Scholar 

  • Yang CC, Yang HJ, Huang JS (1969) The amino acid sequence of cobrotoxin. Biochim Biophys Acta 188:65–77

    PubMed  CAS  Google Scholar 

  • Yu C, Lee C-S, Chuang L-C, Shei Y-R, Wang CY (1990) Two-dimensional NMR studies and secondary structure of cobrotoxin in aqueous solution. Eur J Biochem 193:789–799

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hucho, F. (1994). Peptide Toxins Acting on the Nicotinic Acetylcholine Receptor. In: Herken, H., Hucho, F. (eds) Selective Neurotoxicity. Springer Study Edition, vol 102. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-85117-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-85117-9_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57815-4

  • Online ISBN: 978-3-642-85117-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics