Sensor Allocation for State and Parameter Estimation of Distributed Systems

  • Józef Korbicz
  • Dariusz Uciński
Part of the International Union of Theoretical and Applied Mechanics book series (IUTAM)


This paper deals with the sensors allocation problem for the state estimation and parameter identification in non-linear stochastic distributed parameter systems described by parabolic partial differential equations. In order to pose the sensors location problem, a mathematical model of distributed systems is briefly considered. Then, a concise general review of several methods and approaches considered in the current literature for the state and parameter estimation is discussed. Some typical illustrative numerical example is presented in the final part of this survey type paper.


Distributed parameter systems sensors location identification state estimation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brimkulov U.N., Krug T.K. and Savanov V.L. (1986): Experiment Design in Research of Random Fields and Processes. — Moscow: Nauka, (in Russian).Google Scholar
  2. Carotenuto L., Muraca P. and Raiconi G. (1987): Optimal location of a moving sensor for the estimation of a distributed-pammeter process. — Int. J. Control, v. 46, No. 5, pp. 1671–1688.CrossRefMathSciNetGoogle Scholar
  3. Carotenuto L., Muraca P., Pugliese P. and Raiconi G. (1990): Recursive sensor allocation for a class of distributed parameter systems. — Proc. IASTED Int. Symp. Modelling, Simulation and Optimization, Montreal, Canada.Google Scholar
  4. El Jai A. (1991): Distributed systems analysis via sensors and actuators. — Sensors and Actuators, v. 29, pp. 1–11.Google Scholar
  5. El Jai A. and Amouroux M. (Eds.) (1989): Prep. 5th IFAC Symp. Control of Distributed Parameter Systems. - Perpignan, France.Google Scholar
  6. El Jai A. and Pritchard A.J. (1988): Sensors and Controls in the Analysis of Distributed Systems. — New York: J. Wiley.Google Scholar
  7. Kalaba R. and Spingarn K. (1982): Control, Identification and Input Optimization. — New York: Plenum Press.zbMATHGoogle Scholar
  8. Kammer D.C. (1990): Sensor placement for on-orbit modal identification and correlation of large space structures. — Proc. American Control Conf., San Diego, California, USA, v. 3, pp. 2984–2990.Google Scholar
  9. Kazimierczyk P. (1989): Optimal Experiment Design; Vibrating Beam Under Random Loading. — Warszawa: Inst. PPT PAN Press, (in Polish).Google Scholar
  10. Korbicz J. (1991): Discrete-scanning observation problem for stochastic nonlinear discrete-time parameter system. — Int. J. Systems Sci., v. 22, No. 9, pp. 1647–1662.CrossRefzbMATHMathSciNetGoogle Scholar
  11. Korbicz J. and Gawlowicz P. (1989): Sensors location problem for stochastic non-linear discrete-time distributed parameter systems. — Prep. 5th IFAC Symp. Control of Distributed Parameter Systems, Perpignan, France, pp. 421–426.Google Scholar
  12. Korbicz J. and Zgurowsky M.Z. (1991): Estimation and Control of Distributed Parameter Systems. — Warsaw: PWN Press, (in Polish).Google Scholar
  13. Korbicz J., Zgurovsky M.Z. and Novikov A.N. (1988): Suboptimal sensors location in the state estimation problem for stochastic non-linear distributed parameter systems. — Int. J. Systems Sci., v. 19, No. 9, pp. 1871–1882.CrossRefzbMATHMathSciNetGoogle Scholar
  14. Kubrusly C.S. and Malebranche H. (1985): Sensors and controllers location in distributed systems: a survey. — Automatica, v.21, No. 2, pp. 117–128.MathSciNetGoogle Scholar
  15. Kumar S. and Seinfeld J.H. (1978): Optimal location of measurements for distributed parameter estimation. — IEEE TVans. Automat. Control, v.AC-23, No. 4, pp. 690–698.CrossRefGoogle Scholar
  16. Magami P.G. and Joshi S.M. (1990): Sensor/actuators placement for flexible space structures. — Proc. American Control Conf., San Diego, California, USA, v. 2, pp. 1941–1047Google Scholar
  17. Malebranche H. (1988): Simultaneous state and parameter estimation and location of sensors for distributed systems. — Int. J. Systems Sci., v. 19, No. 8, pp. 1387–1405.CrossRefzbMATHMathSciNetGoogle Scholar
  18. Nakamori Y., Miyamoto S., Ikeda S. and Sawaragi Y. (1980): Measurement optimization with sensitivity criteria for distributed parameter systems. — IEEE TVans. on Autom. Control, v.AC-25, No. 5, pp. 889–900.CrossRefMathSciNetGoogle Scholar
  19. Nakano K. and Sagara S. (1988): Optimal scanning measurement problem for a stochastic distributed parameter system. — Int. J. Syst. Sci., v. 19, No. 7, pp. 1429–1445.MathSciNetGoogle Scholar
  20. Omatu S. and Seinfeld J.H. (1989): Distributed Parameter Systems. Theory and Applications. — Oxford: Oxford University Press.Google Scholar
  21. Quereshi Z.H., Ng T.S. and Goodwin G.C. (1980): Optimum experimental design for identification of distributed parameter systems. — Int. J. Control, v.31, No.1, pp. 21–29.Google Scholar
  22. Rafajlowicz E. (1981): Design of experiments for eigenvalue identification in distributed parameter systems. — Int. J. Control, v. 34, pp. 1078–1094.CrossRefMathSciNetGoogle Scholar
  23. Rafajlowicz E. (1986): Optimum choice of moving sensor trajectories for distributed parameter system identification. — Int. J. Control, v. 43, No. 5, pp. 1441–1451.CrossRefzbMATHMathSciNetGoogle Scholar
  24. Tzafestas S.G. (Ed.)(1982): Distributed Parameter Control Sytems. Theory and Application. — London: Pergamon Press.Google Scholar
  25. Ucinski D. (1992): Optimal sensors location for parameter identification of distributed systems. — Appl. Math, and Comp. Sci., v.2, No.1, pp. 119–134.Google Scholar
  26. Ucinski D., Korbicz J. and Zaremba M. (1993): On optimization of sensors motions in parameter identification of two-dimensional distributed systems. — Proc. 2nd European Control Conference Groningen, The Netherlands, v. 3, pp. 1359–1364.Google Scholar
  27. Yermakov S.M. and Zhiglavsky A.A. (1987): Mathematical Theory of Optimum Experiments. — Moscow: Nauka, (in Russian).Google Scholar
  28. Zarrop M.B. and Goodwin G.C. (1975): Comments on Optimal inputs for system identification— IEEE Trans. Automat. Control, No. 2, pp. 299–300.CrossRefMathSciNetGoogle Scholar
  29. Zgurovsky M.Z., Korbicz J. and Novikov A.N. (1985): Numerical calculation of parameters and states of saturated porous medium and optimal sensors location. — Chemical Technology, No. 2, pp. 50–55 (in Russian).Google Scholar

Copyright information

© Springer-Verlag, Berlin Heidelberg 1994

Authors and Affiliations

  • Józef Korbicz
    • 1
  • Dariusz Uciński
    • 1
  1. 1.Department of Robotics and Software EngineeringTechnical University of Zielona GóraZielona GóraPoland

Personalised recommendations