Skip to main content

Abstract

Fatigue life prediction deals with factors which can be modeled as random variables, random processes or stochastic fields. Given a probabilistic definition of these factors, the life distribution results from a reliability analysis. The advanced mean value first order (AMVFO) method was suggested to minimize the number of functions to be evaluated in the computation of the probability of failure, but it works only if all the uncertainties can be regarded as random variables. A more powerful method must be used when random processes and random fields are present; the potentialities of an extended response surface method are illustrated in this paper. The cumulative distribution function (CDF) of the number of cycles to failure is evaluated by both methods and the results are compared and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bignonnet, A. & Olagnon, M., Fatigue Life Prediction for Variable Amplitude Loading, X Offshore Mechanics and Artic Engineering Conference, ed. Salama M.M., Ree H.C., Kam J.P.C., Booth G.S., Williams J.G., ASME, New York, 1991, pp. 395–401.

    Google Scholar 

  2. Broek D., Elementary Engineering Fracture Mechanics, Martinus Nijhoff Publishers, New York, 1982.

    Google Scholar 

  3. Casciati F. & Faravelli L., Fragility Analysis of Complex Structural System Research Studies Press Ltd., Taunton, 1991.

    Google Scholar 

  4. Casciati F., Colombi P. & Faravelli L., Filter Technique for Stochastic Crack Growth, Fatigue Fract. Engng. Mater. Struct., 15 (5), (1992), 463–475.

    Article  Google Scholar 

  5. Casciati F., Colombi P. & Faravelli L., Lifetime Prediction of Fatigue Sensitive Structural Elements, Structural Safety, 12, (1993), 105–111.

    Article  Google Scholar 

  6. Casciati F. & Colombi P., Load Combination and Related Fatigue Reliability Problems, Structural Safety, in press.

    Google Scholar 

  7. Faravelli L., Structural Reliability via Response Surface, Nonlinear Stochastic Mechanics, ed. Bellomo N. & asciati F., Springer-Verlag, Berlin, 1991, pp. 213–223.

    Google Scholar 

  8. Ishikawa H., Tsurui A., Tanaka H. & Ishikawa H., Reliability Assesment of Structures Based Upon Probabilistic Fracture Mechanics, Probabilistic Engineering Mechanics, 8, (1993),43–56.

    Article  Google Scholar 

  9. Kozin F. & Bogdanoff J.L., A Critical Analysis of Some Probabilistic Models of Fatigue Crack Growth, Eng. Frac. Mech., 14, (1981), 59–89.

    Article  Google Scholar 

  10. Lin Y.K. & Yang J.N., On Statistical Moments of Fatigue Crack Propagation, Eng. Fract. Mech., 18, (1983), 243–256.

    Article  Google Scholar 

  11. Schijve J., Observation on the Prediction of Fatigue Crack Growth Propagation under Variable Amplitude Loading, Fatigue Crack Growth Under Spectrum Loads, ASTM SPT 595, 1976.

    Google Scholar 

  12. Solomos G.P., First-Passage Solution in Fatigue Crack Propagation, Prob. Eng. Mech., 15 (5), (1989), 32–39.

    Article  Google Scholar 

  13. Tang J. & Spencer B.F. Jr., Reliability Solution for the Stocahstic Fatigue Crack Growth Problem, Eng. Fract. Mech., 34, (1989), 419–433.

    Article  Google Scholar 

  14. Wirshing P.H., Ortiz K. & Chen Y.N., Fracture Mechanics Fatigue Model in a Reliability Format, VI Int. Symp. Offshore Mech. and Artic Eng., ASME, New York, 1987, pp. 331–337.

    Google Scholar 

  15. Wirshing P.H., Torng T.Y. & Martin W.S., Advanced Fatigue Reliability Analysis, Int. J. Fatigue 13 (5), (1991), 389–394.

    Article  Google Scholar 

  16. Wu Y.T., Burnside O.H. & Dominquez J., Efficient Probabilistic Fracture Mechanics Analysis, Fourth Int. Conf. Numerical Methods in Fracture Mechanics, Pineridge Press, Swansea, 1987, pp. 85–100.

    Google Scholar 

  17. Wu Y.T., Millwater H.R. & Cruse T.A., An Advanced Probability Structural Analysis Method for Implicit Performance Functions, 30th Structures, Structural Dynamics and Materials Conference, Mobile, Alabama, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag, Berlin Heidelberg

About this paper

Cite this paper

Casciati, F., Colombi, P. (1994). Fatigue Lifetime Prediction for Uncertain Systems. In: Spanos, P.D., Wu, YT. (eds) Probabilistic Structural Mechanics: Advances in Structural Reliability Methods. International Union of Theoretical and Applied Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-85092-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-85092-9_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-85094-3

  • Online ISBN: 978-3-642-85092-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics