Skip to main content

Abstract

In this paper, three reliability methods are presented to solve general fatigue crack growth problems: the first order approximation method (FAM), the Lagrange multiplier formulation (LMF) and a Monte Carlo Simulation (MCS) with exact sampling technique. With the help of the exact sampling technique used in MCS, we are able to determine the extremely low probabilities of failure efficiently and with high accuracy. A comparison of the three methods shows that the LMF is the most efficient method to solve the fatigue crack growth reliability problem. It is also shown that the crack growth direction law plays an important role in the curvilinear crack propagation problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Besterfield, G. H., W. K. Liu, M. A. Lawrence, and T. Belytschko, “Brittle Fracture Reliability by Probabilistic Finite Elements,” J. Eng. MechASCE, 116 (1990) 642–659.

    Article  Google Scholar 

  2. Besterfield, G. H., W. K. Liu, M. A. Lawrence, and T. Belytschko, “Fatigue Crack Growth Reliability by Probabilistic Finite Elements,” Comput. Methods Appi Mech. Engr., 86 (1991) 297–320.

    Article  MATH  Google Scholar 

  3. Bjerager, P., “Probability Integration by Directional Simulation,” J. Eng. Mech., ASCE, 114(1988) 1285–1302.

    Article  Google Scholar 

  4. Cruse, T. A., Y.-T. Wu, B. Dias and K. R. Rajagopal, “Probabilistic Structural Analysis Methods and Applications,” Computer & Structure, 30 (1988) 163–170.

    Article  MathSciNet  Google Scholar 

  5. Der Kiureghian, A. and B.-J. Ke, “The Stochastic Finite Element Method in Structural Reliability,” Probabilistic. Engr. Mech., 3 (1988a) 83–91.

    Article  Google Scholar 

  6. Der Kiureghian, A. and P.-L. Liu, “Optimization Algorithms for Structural Reliability,” ASME Comp. Prob. Mech., ADM-93 (1988b) 185–196.

    Google Scholar 

  7. Erdogan, F., and G. H. Sih, “On the Crack Extension in Plates under Plane Loading and Transverse Shear,” J. Basic Eng., ASME, 85 (1963) 519–527.

    Article  Google Scholar 

  8. Faravelli, L., “A Response Surface Approach for Reliability Analysis,” RILEM Symp on Stock. Meth. in Mat. and Struct. Eng., 1986.

    Google Scholar 

  9. Faravelli, L., “Response Surface Approach for Reliability Analysis,” J. Eng. Mech., ASME, 115 (1989) 2763–2781.

    Article  Google Scholar 

  10. Liu, P.-L., and A. Der Kiureghian, “Finite Element Reliability of Geometrically Nonlinear Uncertain Structures,” J. Eng. Mech., ASCE, 117 (1991) 1806–1825.

    Article  Google Scholar 

  11. Liu, W. K., T. Belytschko and A. Mani, “Probabilistic Finite Element Methods for Nonlinear Structural Dynamics,” Comput. Methods Appl. Mech. Engr., 56 (1986a) 1–81.

    Article  Google Scholar 

  12. Liu, W. K., T. Belytschko and A. Mani, “Random Field Finite Elements,” Int. J. Numer. Methods Eng., 23 (1986b) 1831–1845.

    Article  MathSciNet  MATH  Google Scholar 

  13. Liu, W. K., T. Belytschko and A. Mani, “Application of Probabilistic Finite Element Methods in Elastic/Plastic Dynamics,” ASME J. Eng. Ind., 109 (1987) 2–8.

    Article  Google Scholar 

  14. Liu, W. K., G. H. Besterfield and T. Belytschko, “Transient Probabilistic Systems,” Comput. Methods Appl. Mech. Engr., 67 (1988a) 27–54.

    Article  MATH  Google Scholar 

  15. Liu, W. K., G. H. Besterfield and T. Belytschko, “Variational Approach to Probabilistic Finite Elements,” J. Eng. Mech., ASCE, 114 (1988b) 2115- 2133.

    Article  Google Scholar 

  16. Liu, W. K., and T. Belytschko, Computational Mechanics of Probabilistic and Reliability Analysis, Elme Press International, 1989.

    Google Scholar 

  17. Lua, Y. J., W. K. Liu and T. Belytschko, “A Stochastic Damage Model for the Rupture Prediction of a Multi-phase Solid, Part I: Parametric Studies,” Int. J. Fracture Mech., 55 (1992a) 321–340.

    Article  Google Scholar 

  18. Lua, Y. J., W. K. Liu and T. Belytschko, “Elestic Interaction of a Fatigue Crack with a Micro-defect by the Mixed Boundary Integral Equation Method,” Int. J. Numer. Methods Eng., 36 (1993a) 2743–2759.

    Article  MATH  Google Scholar 

  19. Lua, Y. J., W. K. Liu and T. Belytschko, “A Stochastic Damage Model for the Rupture Prediction of a Multi-phase Solid, Part II: Statistical Approach,” Int. J. Fracture Mech., 55 (1992b) 341–361.

    Article  Google Scholar 

  20. Lua, Y. J., W. K. Liu and T. Belytschko, “Curvilinear Fatigue Crack Reliability Analysis by Stochastic Boundary Element Method,” Int. J. Numer. Methods Eng., 36 (1993b).

    Google Scholar 

  21. Paris, P. C. and F. Erdogan, “A Critical Analysis of Crack Propagation Laws,” ASME J. Basic Engr., 85 (1963) 528–534.

    Article  Google Scholar 

  22. Wu, Y.-T., H. R. Millwater, and T. A. Cruse, “Advanced Probabilistic Structural Analysis Method for Implicit Performance Functions,” AIAA Journal 28 (1990) 1663–1669.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag, Berlin Heidelberg

About this paper

Cite this paper

Liu, W.K., Lua, Y.J., Chen, Y., Belytschko, T. (1994). Study of Three Reliability Methods for Fatigue Crack Growth. In: Spanos, P.D., Wu, YT. (eds) Probabilistic Structural Mechanics: Advances in Structural Reliability Methods. International Union of Theoretical and Applied Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-85092-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-85092-9_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-85094-3

  • Online ISBN: 978-3-642-85092-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics