Oncogenes and Tumor Suppressor Genes

  • M. Ponz de Leon
Part of the Recent Results in Cancer Research book series (RECENTCANCER, volume 136)


During the last 20–30 years, a large body of epidemiologic, cytogenetic, and experimental studies have supported the hypothesis that tumors are caused by genetic damage. The recent advances in molecular biology have definitively proved that this hypothesis was correct, and at present there is no doubt that the basic lesion of the malignant cell is an abnormality in the DNA structure or sequence which results in uncontrolled growth. Two particular classes of genes have been identified — oncogenes and tumor suppressor genes — which are of major importance in the initiation and progression of human malignancies [1].


Tumor Suppressor Gene Familial Adenomatous Polyposis Adenomatous Polyposis Coli Multiple Endocrine Neoplasia Type Burkitt Lymphoma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Weinberg RA (1992) The integration of molecular genetics into cancer management. Cancer 70:1653–1658PubMedCrossRefGoogle Scholar
  2. 2.
    Slamon DJ (1987) Proto-oncogenes and human cancers. N Engl J Med 317: 955–957PubMedCrossRefGoogle Scholar
  3. 3.
    Rous PA (1911) A sarcoma of the fowl transmissible by an agent separable from the tumor cells. J Exp Med 13:397–411PubMedCrossRefGoogle Scholar
  4. 4.
    Santos E, Tronik SR, Aaronson SA et al. (1982) T24 human bladder carcinoma oncogene is an activated form of the normal human homologue of BALB and Harvey-MSV transforming genes. Nature 298:343–347PubMedCrossRefGoogle Scholar
  5. 5.
    Reddy EP, Reynolds RK, Santos E et al. (1992) A point mutation is responsible for the acquisition of transforming properties by the T24 human bladder carcinoma oncogene. Nature 300:149–152CrossRefGoogle Scholar
  6. 6.
    Stacey DW, Kung HF (1984) Transformation of NIH 3T3 cells by microinjection of Ha-ras p21 protein. Nature 310:508–511PubMedCrossRefGoogle Scholar
  7. 7.
    Little GD, Nau MM, Carney DN et al. (1983) Amplification and expression of the c-myc oncogene in human lung cancer cell lines. Nature 306:194–196PubMedCrossRefGoogle Scholar
  8. 8.
    Dalla-Favera R, Bregni M, Erikson J et al. (1982) Human c-myc onc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proc Natl Acad Sci USA 79:7824–7827PubMedCrossRefGoogle Scholar
  9. 9.
    Bishop JM (1991) Molecular themes in oncogenesis. Cell 64:235–248PubMedCrossRefGoogle Scholar
  10. 10.
    Harris H, Klein G (1969) Malignancy of somatic cell hybrids. Nature 224: 1314–1316PubMedCrossRefGoogle Scholar
  11. 11.
    Stanbridge EJ (1990) Identifying tumor suppressor genes in human colorectal cancer. Science 247:12–13PubMedCrossRefGoogle Scholar
  12. 12.
    Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61:759–767PubMedCrossRefGoogle Scholar
  13. 13.
    Knudson A (1977) Genetics and the etiology of human cancer. Adv Hum Genet 8:1–66PubMedGoogle Scholar
  14. 14.
    Lee WH, Bookstein R, Hong F et al. (1987) Human retinoblastoma susceptibility gene: cloning identification, and sequence. Science 235:1394–1399PubMedCrossRefGoogle Scholar
  15. 15.
    Friend SH, Bernards R, Rogeli S et al. (1986) A human DNA segment with properties of the gene that predisposes to retino-blastoma and osteosarcoma. Nature 323:643–646PubMedCrossRefGoogle Scholar
  16. 16.
    Benedict WF, Srivatsan ES, Mark C et al. (1987) Complete or partial homo-zygosity of chromosome 13 in primary retinoblastoma. Cancer Res 47:4189–4191PubMedGoogle Scholar
  17. 17.
    Bunin GR, Beverly SE, Meadows AT et al. (1989) Frequency of 13q abnormalities among 203 patients with retinoblastoma. J Natl Cancer Inst 81:370–374PubMedCrossRefGoogle Scholar
  18. 18.
    Weinberg RA (1989) Oncogenes, antioncogenes and the molecular bases of multistep carcinogenesis. Cancer Res 49:3713–3721PubMedGoogle Scholar
  19. 19.
    Weinberg RA (1991) Tumor suppressor genes. Science 254:1138–1146PubMedCrossRefGoogle Scholar
  20. 20.
    Lee EYHP, Chang CY, Hu N et al. (1992) Mice deficient for Rb are nonviable and show defects in neurogenesis and haematopoiesis. Nature 359:288–294PubMedCrossRefGoogle Scholar
  21. 21.
    Jacks T, Fazeli A, Schmitt EM et al. (1992) Effect of an Rb mutation in the mouse. Nature 359:295–300PubMedCrossRefGoogle Scholar
  22. 22.
    Eeles AE (1993) Predictive testing for germline mutations in the p53 gene: are all the questions answered? Eur J Cancer 29A: 1361–1365PubMedCrossRefGoogle Scholar
  23. 23.
    Malkin D, Jolly KW, Barbier N et al. (1992) Germline mutations of the p53 tumor-suppressor gene in children and young adults with second malignant neoplasms. N Engl J Med 326:1309–1315PubMedCrossRefGoogle Scholar
  24. 24.
    Toguchida J, Yamaguchi T, Dayton SH et al. (1992) Prevalence and spectrum of germline mutations of the p53 gene among patients with sarcoma. N Engl J Med 326:1301–1308PubMedCrossRefGoogle Scholar
  25. 25.
    Levine AJ, Momand J, Finlay CA (1991) The p53 tumour suppressor gene. Nature 351:453–456PubMedCrossRefGoogle Scholar
  26. 26.
    Nigro JM, Baker SJ, Presinger AC et al. (1989) Mutations in the p53 gene occur in diverse human tumour types. Nature 342:705–708PubMedCrossRefGoogle Scholar
  27. 27.
    Baker SJ, Fearon ER, Nigro JM et al. (1989) Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science 244:217–221PubMedCrossRefGoogle Scholar
  28. 28.
    Coles C, Condie A, Chetty U et al. (1992) p53 mutations in breast cancer. Cancer Res 52:5291–5298PubMedGoogle Scholar
  29. 29.
    Nigro JM, Baker SJ, Presinger AC et al. (1989) Mutations in the p53 gene occur in diverse human tumor types. Nature 342:705–708PubMedCrossRefGoogle Scholar
  30. 30.
    Hinds P, Finlay CA, Quartin RS et al. (1990) Mutant p53 DNA clones from human colon carcinomas cooperate with ras in transforming primary rat cells: a comparison of the “hot spot” mutant phenotypes. Cell Growth Differ 1:571–580PubMedGoogle Scholar
  31. 31.
    Dittmer D, Pati S, Zambetti G et al. (1993) Gain of function mutations in p53. Nature Genetics 4:42–45PubMedCrossRefGoogle Scholar
  32. 32.
    Soussi T, Caron de Fromentel C, May P (1990) Structural aspects of the p53 protein in relation to gene evolution. Oncogene 5:945–952PubMedGoogle Scholar
  33. 33.
    Mitsudomi T, Steinberg SM, Nau MM et al. (1992) p53 gene mutations in non-small-cell lung cancer cell lines and their correlation with the presence of ras mutations and clinical features. Oncogene 7:171–180PubMedGoogle Scholar
  34. 34.
    Bressac B, Kew M, Wands J (1991) Selective G to T mutations of p53 gene in hepatocellular carcinoma from southern Africa. Nature 350:429–431PubMedCrossRefGoogle Scholar
  35. 35.
    Ozturk M (1991) p53 mutation in hepatocellular carcinoma after aflatoxin exposure. Lancet 358:1356–1359Google Scholar
  36. 36.
    Scorsone KA, Zhou YZ, Butel JS et al. (1992) p53 mutations cluster at codon 249 in hepatitis B virus-positive hepatocellular carcinomas from China. Cancer Res 52:1635–1638PubMedGoogle Scholar
  37. 37.
    Cunningham J, Lust JA, Schaid DJ et al. (1992) Expression of p53 and 17p allelic loss in colorectal carcinoma. Cancer Res 52:1974–1980PubMedGoogle Scholar
  38. 38.
    Hollstein M, Sidransky D, Vogelstein B et al. (1991) p53 mutations in human cancer. Science 253:49–53PubMedCrossRefGoogle Scholar
  39. 39.
    Donehower LA, Harvey M, Slagle BL et al. (1992) Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356: 215–221PubMedCrossRefGoogle Scholar
  40. 40.
    Hunter T (1991) Cooperative between oncogenes. Cell 64:249–270PubMedCrossRefGoogle Scholar
  41. 41.
    Land H, Parada LF, Weinberg RA (1983) Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 304: 596–602PubMedCrossRefGoogle Scholar
  42. 42.
    Levine AJ, Momand J (1990) Tumor suppressor genes: the p53 and retino-blastoma genes and gene products. Biochim Biophys Acta 1032:119–136PubMedGoogle Scholar
  43. 43.
    Finlay CA, Hinds PW, Levine AJ (1989) The p53 protooncogene can act as a suppressor of tranformation. Cell 57:1083–1093PubMedCrossRefGoogle Scholar
  44. 44.
    Hamilton SR (1993) The molecular genetics of colorectal neoplasia. Gastro-enterology 105:3–7Google Scholar
  45. 45.
    Kinzler KW, Nilbert MC, Su LK et al. (1991) Identification of FAP locus genes from chromosome 5q21. Science 253:661–665PubMedCrossRefGoogle Scholar
  46. 46.
    Groden J, Thilveris A, Samowitz W et al. (1991) Identification and characterization of the familial adenomatous polyposis coli gene. Cell 66:589–600PubMedCrossRefGoogle Scholar
  47. 47.
    Kinzler K, Nilbert MC, Vogelstein B et al. (1991) Identification of a gene located at chromosome 5q21 that is mutated in colorectal cancers. Science 251:1366–1370PubMedCrossRefGoogle Scholar
  48. 48.
    Deschner EE (1988) Cell proliferation and colonic neoplasia. Scand J Gastro-enterol 23[Suppl l]:94–97CrossRefGoogle Scholar
  49. 49.
    Ponz de Leon M, Roncucci L, Di Donato P et al. (1988) Pattern of epithelial cell proliferation in colorectal mucosa of normal subjects and of patients with adenomatous polyps or cancer of the large bowel. Cancer Res 48:4121–4126Google Scholar
  50. 50.
    Cohn KH, Wang F, DeSoto-LaPaix F et al. (1991) Association of nm23-Hl allelic deletions with distant metastases in colorectal carcinoma. Lancet 338: 722–724PubMedCrossRefGoogle Scholar
  51. 51.
    Bülow S (1989) Familial adenomatous polyposis. Ann Med 21:299–307PubMedCrossRefGoogle Scholar
  52. 52.
    Lyons J, Landis CA, Harsh G et al. (1990) Two G protein oncogenes in human endocrine tumors. Science 249:655–659PubMedCrossRefGoogle Scholar
  53. 53.
    Brandi ML (1991) Multiple endocrine neoplasia type 1: general features and new insights into etiology. J Endocrinol Invest 14:61–72PubMedGoogle Scholar
  54. 54.
    Scott N, Quirke P (1993) Molecular biology of colorectal neoplasia. Gut 34: 298–292Google Scholar
  55. 55.
    Itoh F, Hinoda Y, Ohe M et al. (1993) Decreased expression of DCC mRNA in human colorectal cancers. Int J Cancer 53:260–263PubMedCrossRefGoogle Scholar
  56. 56.
    Mulligan LM, Kwok JB, Healey CS et al. (1993) Germ-line mutations of the RET proto-oncogene in multiple endocrine neoplasia type 2A. Nature 363: 458–460PubMedCrossRefGoogle Scholar
  57. 57.
    Pezzella F, Turley H, Kuzu I et al. (1993) bcl-2 protein in non-small-cell lung carcinoma. N Engl J Med 329:690–694PubMedCrossRefGoogle Scholar
  58. 58.
    Wang L, Patel U, Ghosh L et al. (1993) Mutation in the nm23 gene is associated with metastasis in colorectal cancer. Cancer Res 53:717–720PubMedGoogle Scholar
  59. 59.
    Kinzler KW, Vogelstein B (1993) A gene for neurofibromatosis 2. Nature 363:495–496PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • M. Ponz de Leon
    • 1
  1. 1.Istituto di Patologia Medica PoliclinicoUniversità degli Studi di ModenaModenaItaly

Personalised recommendations