Skip to main content

Abstract

In root disease epidemics, inoculum is but one part of the disease triangle with host and environment. Although inoculum is a critical factor in the development of root disease epidemics, the role of a favorable environment and presence of a host also contribute to root disease epidemics. Often the inoculum and host are present but the environment is unfavorable and hence no epidemic develops. Other times, a host is present in a favorable environment, but inoculum is not present in the infection court. In addition to host, and inoculum, the role of soil physical factors such as pH, soil texture, and bulk density can have a great influence on the extent and severity of root disease epidemics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ali-Shtayeh MS, MacDonald JD, Kabashima J (1991) A method for using commercial ELISA tests to detect zoospores of Phytophthora and Pythium species in irrigation water. Plant Dis 75: 305–311

    Article  CAS  Google Scholar 

  • Ashworth LJ Jr, McCutcheon OD, George AG (1972) Verticillium albo-atrum: the quantitative relationship between inoculum density and infection in cotton. Phytopathology 62: 901–903

    Article  Google Scholar 

  • Baker R (1965) The dynamics of inoculum. In: Baker KF, Snyder WC (eds) Ecology of soil-borne plant pathogens. Univ California Press, Berkeley, pp 395–419

    Google Scholar 

  • Baker R (1969) Use of population studies in research on plant pathogens in soil. In: Toussoun TA, Bega RV, Nelson PE (eds) Root diseases and soil-borne pathogens. Univ California Press, Berkeley, pp 11–15

    Google Scholar 

  • Baker R (1971a) Simulators in epidemiology — can a simulator of root disease be built? Epidemiology of plant diseases, vol 1. Adv Study Inst, Wageningen, pp 1–2

    Google Scholar 

  • Baker R (1971b) Analyses involving inoculum density of soil-borne plant pathogens in epidemiology. Phytopathology 61: 1280–1292

    Article  Google Scholar 

  • Baker R (1978) Inoculum potential. In: Horsfall JG, Cowling EB (eds) Plant diseases: an advanced treatise, vol II. Academic Press, New York, pp 137–157

    Google Scholar 

  • Baker R (1991) Biological control: eradication of plant pathogens by adding organic amendments to soil. In: Pimentel D (ed) Handbook of pest management in agriculture, vol II, 2nd edn. CRC Press, Boca Raton, pp 317–327

    Google Scholar 

  • Baker R, Maurer CL, Maurer RA (1967) Ecology of plant pathogens in soil. VIII. Mathematical models and inoculum density. Phytopathology 57: 662–666

    Google Scholar 

  • Benson DM (1991) Detection of Phytophthora cinnamomi in azalea with commercial serological assays kits. Plant Dis 75: 478–482

    Article  CAS  Google Scholar 

  • Benson DM, Baker R (1974a) Epidemiology of Rhizoctonia solani preemergence damping-off of radish: influence of pentachloronitrobenzene. Phytopathology 64: 38–40

    Article  CAS  Google Scholar 

  • Benson DM, Baker R (1974b) Epidemiology of Rhizoctonia solani preemergence damping-off of radish: inoculum potential and disease potential interaction. Phytopathology 64: 957–962

    Article  Google Scholar 

  • Benson DM, Baker R (1974c) Epidemiology of Rhizoctonia solani preemergence damping-off of radish: survival. Phytopathology 64: 1163–1168

    Article  Google Scholar 

  • Beute MK, Rodriquez-Kabana R (1979) Effect of volatile compounds from re-moistened peanut tissues on growth and germination of sclerotia of Sclerotium rolfsii. Phytopathology 69: 802–805

    Article  CAS  Google Scholar 

  • Black MC, Beute MK (1984) Relationship among inoculum density, microsclerotium size, and inoculum efficiency of Cylindrocladium crotalariae causing root rot on peanuts. Phytopathology 74: 1128–1132

    Article  Google Scholar 

  • Bouhot D (1979) Estimation of inoculum density and inoculum potential: techniques and their value for disease prediction. In: Schippers B, Gams W (eds) Soil-borne plant pathogens. Academic Press, New York, pp 21–34

    Google Scholar 

  • Bowers JH, Mitchell DJ (1991) Relationship between inoculum level of Phytophthora capsici and mortality of pepper. Phytopathology 81: 178–184

    Article  Google Scholar 

  • Bruehl GW (1987) Soilborne plant pathogens. MacMillian, New York, 368 pp

    Google Scholar 

  • Bristow PR, Lockwood JL (1975) Soil fungistasis: role of the microbial nutrient sink and of fungistatic substances in two soils. J Gen Microbiol 90: 147–156

    PubMed  CAS  Google Scholar 

  • Brown JF, Wyllie TD (1970) Ultrastructure of microsclerotia of Verticillium albo-atrum. Phytopathology 60: 538–542

    Article  Google Scholar 

  • Campbell CL, Nelson LA (1986) Evaluation of an assay for quantifying populations of sclerotia of Macrophomina phaseolina in soil. Plant Dis 70: 645–647

    Article  Google Scholar 

  • Campbell CL, Powell NT (1980) Progression of diseases induced by soilborne pathogens: tobacco black shank. Prot Ecol 2: 177–182

    Google Scholar 

  • Campbell CL, Jacobi WR, Powell NT, Main CE (1984) Analysis of disease progression and the randomness of occurrence of infected plants during tobacco black shank epidemics. Phytopathology 74: 230–235

    Article  Google Scholar 

  • Chen W, Hoitink HAJ, Schmitthenner AF, Tuovinen OH (1988) The role of microbial activity in suppression of damping-off caused by Pythium ulitmum. Phytopathology 78: 314–322

    Article  Google Scholar 

  • Coley-Smith JR, Cooke RC (1971) Survival and germination of fungal sclerotia. Annu Rev Phytopathol 9: 65–92

    Article  Google Scholar 

  • Cook RJ, Schroth MN (1965) Carbon and nitrogen compounds and germination of chlamydospores of Fusarium solani f. phaseoli. Phytopathology 55: 254–256

    Google Scholar 

  • Cook RJ, Snyder WC (1965) Influence of host exudates on growth and survival of germlings of Fusarium solani f. phaseoli in soil. Phytopathology 55: 1021–1025

    Google Scholar 

  • Dimond AE, Horsfall JG (1960) Inoculum and the diseased population. In: Horsfall JG, Dimond AE (eds) Plant pathology, an advanced treatise. Academic Press, New York, pp 1–22

    Google Scholar 

  • Dimond AE, Horsfall JG (1965) The theory of inoculum. In: Baker KF, Snyder WC (eds) Ecology of soil-borne plant pathogens. Univ California Press, Berkeley, 571 pp

    Google Scholar 

  • Dobbs CG, Hinson WH (1953) A widespread fungistasis in soils. Nature 172: 197–199

    Article  PubMed  CAS  Google Scholar 

  • English JT, Mitchell DJ (1988) Relationships between the development of root systems of tobacco and infection by Phytophthora parasitica var. nicotianae. Phytopathology 78: 1478–1483

    Article  Google Scholar 

  • Farley JD, Wilhelm S, Snyder WC (1971) Repeated germination and sporulation of microsclerotia of Verticillium albo-atrum in soil. Phytopathology 61: 260–264

    Article  Google Scholar 

  • Ferriss RS (1981) Calculating rhizosphere size. Phytopathology 71: 1229–1231

    Google Scholar 

  • Foster RC (1985) The biology of the rhizosphere. In: Parker CA, Rovira AD, Moore KJ, Wong PTW (eds) Ecology and management of soilborne plant pathogens. Am Phytopathol Soc, St Paul, p 358

    Google Scholar 

  • Fradkin A, Patrick ZA (1985) Interactions between conidia of Cochliobolus sativus and soil bacteria as affected by physical contact and exogenous nutrients. Can J Plant Pathol 7: 7–18

    Article  Google Scholar 

  • Garrett SD (1956) Biology of root-infecting fungi. Cambridge Univ Press, London, 294 pp

    Google Scholar 

  • Garrett SD (1970) Pathogenic root-infecting fungi. Cambridge Univ Press, Cambridge, 294 pp

    Google Scholar 

  • Gilligan CA (1979) Modeling rhizosphere infection. Phytopathology 69: 782–784

    Article  Google Scholar 

  • Gilligan CA (1983) Modeling of soilborne pathogens. Annu Rev Phytopathol 21: 45–64

    Article  Google Scholar 

  • Gilligan CA (1985) Probability models for host infection by soilborne fungi. Phytopathology 75: 61–67

    Article  Google Scholar 

  • Gilligan CA, Simons SA (1987) Inoculum efficiency and pathozone width for two host-parasite systems. New Phytol 107: 549–566

    Article  Google Scholar 

  • Goodwin PH, English JT, Neher DA, Duniway JM, Kirkpatrick BC (1990) Detection of Phytophthora parasitica from soil and host tissue with a species-specific DNA probe. Phytopathology 89: 277–281

    Article  Google Scholar 

  • Grainger J (1956) Host nutrition and attack by fungal parasites. Phytopathology 46: 445–456

    CAS  Google Scholar 

  • Gregory PH (1948) The multiple-infection transformation. Ann Appl Biol 35: 412–417

    Article  PubMed  CAS  Google Scholar 

  • Griffin GJ (1969) Fusarium oxysporum and Aspergillus flavus spore germination in the rhizosphere of peanut. Phytopathology 59: 1214–1218

    PubMed  CAS  Google Scholar 

  • Griffin GJ, Baker R (1991) Population dynamics of plant pathogens and associated organisms in soil in relation to infectious inoculum. In: Katan J, DeVay JE (eds) Soil solarization. CRC Press, Boca Raton, pp 3–21

    Google Scholar 

  • Grogan RG, Ioannou N, Schneider RW, Sall MA, Kimble KA (1979) Verticillium wilt on resistant tomato cultivars in California: virulence of isolates from plants and soil and relationship of inoculum density to disease incidence. Phytopathology 69: 1176–1180

    Article  Google Scholar 

  • Grogan RG, Sall MA, Punja ZK (1980) Concepts for modeling root infection by soilborne fungi. Phytopathology 71: 361–363

    Article  Google Scholar 

  • Hakeem A, Ghaffar A (1977) Reduction of the number of sclerotia of Macrophomina phaseolina in soil by organic amendments. Phytopathol Z 88: 272–275

    Article  Google Scholar 

  • Hanounik SB, Pirie WR, Osborne WW (1977) Influence of soil chemical treatment and host genotype on the inoculum density-disease relationship of Cylindrocladium black rot of peanut. Plant Dis Rep 61: 431–435

    CAS  Google Scholar 

  • Henis Y, Ben-Yephet Y (1970) Effect of propagule size of Rhizoctonia solani on saprophytic growth, infectivity, and virulence of bean seedlings. Phytopathology 60: 1351–1356

    Article  Google Scholar 

  • Henis Y, Ghaffer A, Baker R, Gillespie SL (1978) A new pellet-soil sampler and its use for study of population dynamics of Rhizoctonia solani in soil. Phytopathology 68: 371–376

    Article  Google Scholar 

  • Hiltner L (1904) Über neuere Erfahrungen und Probleme auf dem Gebiet der Bodenbakteriologie und unter besonderer Berücksichtigung der Gründüngung und Brache. Arb Deutsch Landw Ges 98: 59–78

    Google Scholar 

  • Ho WC, Ko WH (1982) Characteristics of soil microbiostasis. Soil Biol Biochem 14: 589–593

    Article  Google Scholar 

  • Hora TS, Baker R (1970) Volatile factor in soil fungistasis. Nature 225: 1071–1072

    Article  PubMed  CAS  Google Scholar 

  • Hora TS, Baker R (1972a) Extraction of a volatile factor from soil inducing fungistasis. Phytopathology 62: 1475–1476

    Article  Google Scholar 

  • Hora TS, Baker R (1972b) Soil fungistasis microflora producing a volatile inhibitor. Trans Br Mycol Soc 59: 491–500

    Article  Google Scholar 

  • Hora TS, Baker R (1974) Abiotic generation of a volatile fungistatic factor in soil by liming. Phytopathology 64: 624–629

    Article  CAS  Google Scholar 

  • Hora TS, Baker R, Griffin GJ (1977) Experimental evaluation of hypotheses explaining the nature of soil fungistasis. Phytopathology 67: 373–379

    Article  CAS  Google Scholar 

  • Horsfall JG (1932) Dusting tomato seed with copper sulphate monohydrate for combating damping-off. NY Agric Exp Stn Tech Bull 198: 1–34

    Google Scholar 

  • Horsfall JG, Dimond AE (1963) A perspective on inoculum potential. Indian Bot Soc 42: 46–57

    Google Scholar 

  • Hsu SC, Lockwood JL (1973) Soil fungistasis: behaviour of nutrient-independent spores and sclerotia in a model system. Phytopathology 63: 334–337

    Article  Google Scholar 

  • Katznelson H (1965) Nature and importance of the rhizosphere. In: Baker KF, Snyder WC (eds) Ecology of soil-borne plant pathogens. Univ California Press, Berkeley, pp 187–209

    Google Scholar 

  • King JE, Coley-Smith JR (1968) Effects of volatile products of Allium species and their extracts on germination of sclerotia of Sclerotiurn cepivorum Berk. Ann Appl Biol 61: 407–414

    Article  Google Scholar 

  • Ko WH, Lockwood JE (1967) Soil fungistasis: relation to fungal spore nutrition. Phytopathology 57: 894–901

    Google Scholar 

  • Ko WH, Hora FK (1972) The nature of a volatile inhibitor from certain alkaline soils. Phytopathology 62: 573–575

    Article  Google Scholar 

  • Ko WH, Hora FK, Herlicska E (1974) Isolation and identification of a volatile fungistatic substance from alkaline soil. Phytopathology 64: 1398–1400

    Article  CAS  Google Scholar 

  • Koch DO, Jeger MJ, Gerik TJ, Kenerley CM (1987) Effects of plant density on progress of Phymatotrichum root rot in cotton. Phytopathology 77: 1657–1662

    Article  Google Scholar 

  • Leach LD, Davey AE (1938) Determining the sclerotial population of Sclerotium rolfsii by soil analysis and predicting losses of sugar beets on the basis of these analyses. J Agric Res 56: 619–631

    Google Scholar 

  • Leonard KJ (1980) A reinterpretation of the mathematical analysis of rhizoplane and rhizosphere effects. Phytopathology 70: 695–696

    Article  Google Scholar 

  • Linderman RG, Gilbert RG (1973) Behavior of sclerotia of Sclerotium rolfsii produced in soil or in culture regarding germination stimulation by volatiles, fungistasis, and sodium hypochloride treatment. Phytopathology 63: 500–504

    Article  CAS  Google Scholar 

  • Lingappa BT, Lockwood JL (1964) Activation of soil microflora by fungus spores in relation to soil fungistasis. J Gen Microbiol 35: 215–227

    PubMed  CAS  Google Scholar 

  • Lockwood JL (1975) Quantitative evaluation of a leaching model system for soil fungistasis. Phytopathology 65: 460–464

    Article  CAS  Google Scholar 

  • Loria R, Lacy ML (1979) Mechanism of increased susceptibility of bleached pea seeds to seed and seedling rot. Phytopathology 69: 573–575

    Article  CAS  Google Scholar 

  • MacDonald JD, Duniway JM (1979) Use of fluorescent antibodies to study the survival of Phytophthora megasperma and P. cinnamomi zoospores in soil. Phytopathology 69: 436–441

    Article  Google Scholar 

  • Mitchell JE (1979) The dynamics of inoculum potential of populations of soil-borne plant pathogens in the soil ecosystem. In: Schippers B, Gams W (eds) Soil-borne plant pathogens. Academic Press, New York, pp 3–20

    Google Scholar 

  • Papavizas GC, Davey CB (1961) Extent and nature of the rhizosphere of Lupinus. Plant Soil 14: 215–236

    Article  Google Scholar 

  • Park D (1965) Survival of microorganisms in soil. In: Baker KF, Snyder WC (eds) Ecology of soil-borne plant pathogens. Univ California Press, Berkeley, pp 82–98

    Google Scholar 

  • Pavlica DA, Hora TS, Bradshaw JJ, Skogerboe RK, Baker R (1978) Volatiles from soil influencing activities of soil fungi. Phytopathology 68: 758–765

    Article  CAS  Google Scholar 

  • Pfender WF, Rouse DI, Hagedorn DJ (1981) A “most probable number” method for estimating inoculum density of Aphanomyces euteiches in naturally infested soil. Phytopathology 71: 1169–1172

    Article  Google Scholar 

  • Pfender WF, Hagedorn DJ (1983) Disease progress and yield loss in Aphanomyces root rot of peas. Phytopathology 73: 1109–1113

    Article  Google Scholar 

  • Phipps PM, Beute MK (1977) Sensitivity of susceptible and resistant peanut cultivars to inoculum densities of Cylindrocladium crotalariae microsclerotia in soil. Plant Dis Rep 61: 300–303

    Google Scholar 

  • Punja ZK (1986) Relationships among soil depth, soil texture, and inoculum placement in infection of carrot roots by eruptively germinating sclerotia of Sclerotium rolfsii. Phytopathology 76: 976–980

    Article  Google Scholar 

  • Punja ZK, Grogan RG (1981) Eruptive germination of sclerotia of Sclerotium rolfsii. Phytopathology 71: 1092–1099

    Article  Google Scholar 

  • Punja ZK, Jenkins SF, Grogan RG (1984) Effect of volatile compounds, nutrient, and source of sclerotia on eruptive sclerotial germination of Sclerotium rolfsii. Phytopathology 74: 1290–1295

    Article  CAS  Google Scholar 

  • Reynolds KM, Benson DM, Bruck RI (1985) Epidemiology of Phytophthora root rot of Fraser fir: rhizosphere width and inoculum efficiency. Phytopathology 75: 1010–1014

    Article  Google Scholar 

  • Ribeiro OK (1983) Physiology of asexual sporulation and spore germination in Phytophthora. In: Erwin DG, Bartnicki-Garcia S, Tsao PH (eds) Phytophthora, its biology, taxonomy, ecology, and pathology. Am Phytopathol Soc, St Paul, p 392

    Google Scholar 

  • Rodriquez-Kabana R, Beute MK, Backman PA (1980) A method for estimating numbers of viable sclerotia of Sclerotium rolfsii in soil. Phytopathology 70: 917–919

    Article  Google Scholar 

  • Romine M, Baker R (1972) Properties of a volatile fungistatic factor in soil. Phy-topathology 62: 602–605

    CAS  Google Scholar 

  • Rovira AD, Davey CB (1974) Biology of the rhizosphere. In: Carson EW (ed) The plant root and environment. University Press of Virginia, Charlottesville, p 691

    Google Scholar 

  • Schippers B, Palm LC (1973) Ammonia a fungistatic volatile in chitin-amended soil. Neth J Plant Pathol 79: 279–281

    Article  Google Scholar 

  • Schmitthenner AF (1988) ELISA detection of Phytophthora from soil. Phytopathology 78: 1576 (Abstr)

    Google Scholar 

  • Schnurer J, Rosswall T (1982) Fluorescein diacetate hydrolysis as a measure of total microbial activity in soil and litter. Appl Environ Microbiol 43: 1256–1261

    PubMed  CAS  Google Scholar 

  • Schroth MN, Snyder WC (1961) Effect of host exudates on chlamydospore germination of the bean root rot fungus, Fusarium solani f. phaseoli. Phytopathology 51: 389–393

    CAS  Google Scholar 

  • Schroth MN, Cook RJ (1964) Seed exudation and its influence on pre-emergence damping-off in bean. Phytopathology 54: 670–673

    Google Scholar 

  • Schuster ML, Coyne DP (1974) Survival mechanism of phytopathogenic bacteria. Annu Rev Phytopathol 12: 199–221

    Article  Google Scholar 

  • Short GE, Lacy ML (1974) Germination of Fusarium solani f. pisi chlamydospores in the spermosphere of pea. Phytopathology 64: 558–562

    Article  Google Scholar 

  • Short GE, Lacy ML (1976a) Carbohydrate exudation from pea seeds: effect of cultivar, seed age, seed color, and temperature. Phytopathology 66: 182–187

    Article  CAS  Google Scholar 

  • Short GE, Lacy ML (1976b) Factors affecting pea seed and seedling rot in soil. Phytopathology 66: 188–192

    Article  Google Scholar 

  • Singleton LL, Mihail JD, Rush CM (1992) Methods for research on soilborne phytopathogenic fungi. Am Phytopathol Soc, St Paul, 266 pp

    Google Scholar 

  • Taylor JD, Griffin GJ, Garren KH (1981) Inoculum pattern, inoculum density-disease incidence relationships, and populations fluctuations of Cylindrocladium crotalariae microsclerotia in peanut field soil. Phytopathology 71: 1297–1302

    Google Scholar 

  • Tomimatsu GS, Griffin GJ (1982) Inoculum potential of Cylindrocladium crotalariae: infection rates and microsclerotial density-root infection relationships on peanut. Phytopathology 72: 511–517

    Article  Google Scholar 

  • Toussoun TA (1970) Nutrition and pathogenesis of Fusarium solani f. phaseoli. In: Toussoun TA, Bega RV, Nelson PE (eds) Root diseases and soil-born pathogens. Univ California Press, Berkeley, p 252

    Google Scholar 

  • Vanderplank JE (1975) Principles of plant infection. Academic Press, New York, pp 84–87

    Google Scholar 

  • Watson AG, Ford EJ (1972) Soil fungistasis — a reappraisal. Annu Rev Phytopathol 10: 327–347

    Article  Google Scholar 

  • Wilkinson HT, Cook RJ, Alldredge JR (1985) Relation of inoculum size and concentration to infection of wheat roots by Gaeumannomyces graminis var. tritici. Phytopathology 75: 98–103

    Article  Google Scholar 

  • Yarwood CE, Sylvester ES (1959) The half-life concept of longevity of plant pathogens. Plant Dis Rep 43: 125–128

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Benson, D.M. (1994). Inoculum. In: Epidemiology and Management of Root Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-85063-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-85063-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-85065-3

  • Online ISBN: 978-3-642-85063-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics