Interstitial Implant Radiosurgery of Brain Tumors: Radiobiology, Indications, and Results

  • C. B. Ostertag
Part of the Recent Results in Cancer Research book series (RECENTCANCER, volume 135)

Abstract

The discovery of radium by Marie and Pierre Curie in 1898 was followed promptly by the clinical application of this radioisotope in the treatment of various cancers. Alexander Graham Bell suggested in 1903: “There is no reason why a tiny fragment of radium sealed-up in a fine glass tube should not be inserted into the very heart of the cancer, thus acting directly on the diseased material” [2]. This statement accurately describes the irradiation technique that was later known as brachytherapy (greek for radiation therapy in short range, as opposed to teletherapy). The technique is based on the principle of selectively irradiating a tumour while protecting the healthy surroun­ding brain from radiation energy. The amount of radiation reaching normal tissue varies inversely with the square of the distance from the implanted radioactive source.

Keywords

Permeability Titanium Toxicity Attenuation Radium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson LL, Hsin MK, Ing-Yuan D (1981) Clinical dosimetry with 125-I. In:George FW (ed) Modem interstitial and intracavitary radiation cancer management. Masson, New YorkGoogle Scholar
  2. 2.
    Bernstein M, Gutin PH (1981) Interstitial irradiation of brain tumors: A review. Neurosurgery 6: 741–750CrossRefGoogle Scholar
  3. 3.
    Cohadon F (1990) Indications for surgery in the management of gliomas. In: Symon L et al (eds) Advances and technical standards in neurosurgery, vol 17. Springer, Berlin Heidelberg New York, pp 189–234CrossRefGoogle Scholar
  4. 4.
    Fike JR, Cann CE, Philips TL, Bernstein M, Gutin PH, Turowsky K, Weaver KA, Davis RL, Higgins RJ, Da Silva V (1985) Radiation brain damage induced by interstitial 125-I sources: a canine model evaluated by quantitative computed tomography. Neurosurgery 16: 530–537PubMedCrossRefGoogle Scholar
  5. 5.
    Frazier C (1920) The effects of radium emanations on brain tumors. Surg Gynecol Obstet 31: 236–239Google Scholar
  6. 6.
    Groothuis DR, Wright DC, Ostertag CB (1987) The effect of I-125 interstitial radiotherapy on blood brain barrier function in normal canine brain. J Neurosurg 67: 985–902Google Scholar
  7. 7.
    Groothuis DR, Lapin GD, Vriesendorp FJ, Mikhael MA, Patlak CS (1991) A method to quantitatively measure transcapillary transport of iodinated compounds in canine brain tumors with computed tomography. J Cereb Blood Flow Metab 11: 939–948PubMedCrossRefGoogle Scholar
  8. 8.
    Guthrie BL, Laws ER (1991) Management of Supratentorial Gliomas In: Karim ABMF, Laws ER Jr (eds) Glioma. Springer, Berlin, Heidelberg, pp 75–92Google Scholar
  9. 9.
    Gutin PH, Leibel SA (1985) Stereotactic interstitial irradiation of malignant brain tumors. Neurologic Clinics 3: 883–893PubMedGoogle Scholar
  10. 10.
    Hirsch O (1952) Symptoms and treatment of pituitary tumors. Arch Otolaryngol 55: 268–306CrossRefGoogle Scholar
  11. 11.
    Hoskin P, Crow J, Ford H (1990) The influence of extent and local management on the outcome of radiotherapy for brain metastases. hit J Radiat Oncol Biol Phys 19: 111–115CrossRefGoogle Scholar
  12. 12.
    Janzer RC, Kleihues P, Ostertag CB (1986) Early and late effects on the normal dog brain of permanent interstitial Iridium-192 irradiation. Acta Neuropathol 70: 91–102PubMedCrossRefGoogle Scholar
  13. 13.
    Kreth FW, Warnke PC, Ostertag CB (1993) Interstitial Implant Radiosurgery of Cerebral Metastases Acta Neurochir Suppl 58: 112–114Google Scholar
  14. 14.
    Krishnaswamy V (1978) Dose distribution around an 125-I seed source in tissue. Radiology 126: 489–491PubMedGoogle Scholar
  15. 15.
    Larsson B (1992) Radiobiological fundamentals in radiosurgery. In: Steiner L et al. (eds) Radiosurgery: baseline and trends. Raven, New YorkGoogle Scholar
  16. 16.
    Laws ER, Taylor WF, Marvin BC, Okazaki H (1984) Neurosurgical management of low-grade astrocytoma of the cerebral hemispheres. J Neurosurg 61: 665–673PubMedCrossRefGoogle Scholar
  17. 17.
    Lindquist C, Hindmarsh T, Kihlström L, Mindus P, Steiner L (1992) MRI and CT Studies of Radionecrosis Development in the Normal Human Brain. In: Steiner L et al. (eds) Radiosurgery: baseline and trends. Raven, New YorkGoogle Scholar
  18. 18.
    Morantz RA (1987) Radiation therapy in the treatment of cerebral astrocytoma. Neurosurgery 20: 975–982PubMedCrossRefGoogle Scholar
  19. 19.
    Ostertag CB, Hossmann KA, v. d. Kerckhoff W (1982) Radiation effects of Iridium-192 implants in the cat brain. Nucl Med 21: 99–104Google Scholar
  20. 20.
    Ostertag CB, Weigel K (1982) Three-dimensional CT Scanning of the Dog Brain. J Comput Assist Tom 6 (5): 1036–1037CrossRefGoogle Scholar
  21. 21.
    Ostertag CB, Weigel K, Warnke P, Lombeck G, Kleihues P (1983) Sequential morphological changes in the dog brain after interstitial Iodine-125 irradiation. Neurosurgery 13: 523–528PubMedCrossRefGoogle Scholar
  22. 22.
    Ostertag CB, Warnke P, Kleihues P, Bigner D (1984) Iodine-125 interstitial irradiation of virally induced dog brain tumors. Neurol Res 6: 176–180PubMedGoogle Scholar
  23. 23.
    Ostertag CB, Kreth FW (1992) Stereotactic interstitial radiotherapy in the treatment of gliomas. Acta Neurochir 119: 53–61CrossRefGoogle Scholar
  24. 24.
    Patchell RA, Tibbs PA, Walsh JW, Dempsey RJ, Maruyama Y, Kryscio RJ, Markesbery WR, McDonald JS, Young B (1990) A randomized trial of surgery in the treatment of single metastases to the brain. N Engl J Med 332: 494–500CrossRefGoogle Scholar
  25. 25.
    Prados M, Leibel S, Barnett CM, Gutin P (1989) Interstitial brachytherapy for metastatic brain tumors. Cancer 63: 657–660PubMedCrossRefGoogle Scholar
  26. 26.
    Sause WT, Crowley JJ, Morantz R, Rotman M, Mowry PA, Bouzaglou A, Borst JR, Selin H (1990) Solitary brain metastasis: results of an RTOG/SWOG protocol evaluation Surgery+RT versus RT alone Am J Clin Oncol 13: 427–432Google Scholar
  27. 27.
    Shaw EG,Daumas-Duport C,Scheithauer BW, Gilbertson DT, et al. (1989) Radiation therapy in the management of low-grade supratentorial astrocytomas. J Neurosurg 70: 853–861PubMedCrossRefGoogle Scholar
  28. 28.
    Sheline GE (1985) The role of radiation therapy in the treatment of low-grade gliomas. Clinical Neurosurgery, Williams and Wilkins, Baltimore, pp 563–574Google Scholar
  29. 29.
    Sondhaus CA (1981)1–125: Physical properties, photon dosimetry and effectiveness. In: George FW (ed) Modern interstitial and intracavitary radiation cancer management. Masson, New YorkGoogle Scholar
  30. 30.
    Talairach J, Aboulker J, Ruggiero G, David M (1955) Essai d’un nouveau traitement des tumeurs cérébrales inopérables. Mise en place d’or radio-actif par stéréotaxie. Semin Hop Paris 31: 548653Google Scholar
  31. 31.
    Turowsky K, Fike JR, Cann CE, Higgins RI, Davis RL, Gutin PH, Phillips TL, Weaver KA (1986) Normal brain iodine-125 radiation damage: effect of dose and irradiated volume in a canine model. Radiology 158: 833–838Google Scholar
  32. 32.
    Warnke PC, Hans FJ, Ostertag CB (1993) Impact of stereotactic interstitial irradiation on brain capillary physiology. Acta Neurochir Suppl. 58: 85–88Google Scholar
  33. 33.
    Weingart J, Olivi A, Brem H (1991) Supratentorial low-grade astrocytomas in adults. Neurosurg Q 1 (3): 141–159CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • C. B. Ostertag
    • 1
  1. 1.Abteilung Stereotaktische NeurochirurgieNeurochirurgische UniversitätsklinikFreiburgGermany

Personalised recommendations