Skip to main content
Book cover

Sepsis pp 174–180Cite as

Endothelial Cell Function in the Critically Ill

  • Chapter

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICM,volume 18))

Abstract

Our concepts have changed markedly since W. Harvey’s original description of the vasculature as a passive conduit for blood to the vital organs. The endothelium of the vasculature represents a complex organ synthesizing a number of mediators and interacting actively with other cellular elements including circulating white blood cells and platelets and infiltrating macrophages. The endothelium can directly influence the vascular smooth muscle, thereby regulating the distribution of blood flow to the cells. The total endothelium surface area is estimated to cover six tennis courts and to weigh 1–1.5 kg in an adult.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cooke JP, Stamler J, Andon N, Davies PF, McKinley G, Loscalzo J (1990) Flow stimulates endothelial cells to release a nitrovasodilator that is potentiated by reduced thiol. Am J Physiol 259: H804–H812

    PubMed  CAS  Google Scholar 

  2. Frangos JA, Eskin SG, McIntire LV, Ives CL (1985) Flow effects on prostacyclin production by cultured human endothelial cells. Science 227:1477–1479

    Article  PubMed  CAS  Google Scholar 

  3. Davies PF, Dewey CJ, Bussolari SR, Gordon EJ (1984) Influence of hemodynamic forces on vascular endothelial function: in vitro studies of shear stress and pinocytosis in bovine aortic cells. J Clin Invest 73:1121–1129

    Article  PubMed  CAS  Google Scholar 

  4. Diamond SE, Eskin SG, Mclntire LV (1989) Fluid flow stimulates tissue plasminogen activator secretion by cultured human endothelial cells. Science 243:1483–1485

    Article  PubMed  CAS  Google Scholar 

  5. Dzau VJ, Gibbons GH, Cooke JP, Omoigui N (1993) Vascular biology and medicine in the 1990s: scope, concepts, potentials, and perspectives. Circulation 83:705–719

    Google Scholar 

  6. Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376

    Article  PubMed  CAS  Google Scholar 

  7. Ignarro LJ, Byrns RE, Buga GM, Wood KS (1987) Endothelium-derived relaxing factor from pulmonary artery and vein possesses pharmacologic and chemical properties identical to those of nitric oxide radical. Circ Res 61:866–879

    PubMed  CAS  Google Scholar 

  8. Palmer RM, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524–526

    Article  PubMed  CAS  Google Scholar 

  9. Palmer RM, Ashton DS, Moncada S (1988) Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 333:664–666

    Article  PubMed  CAS  Google Scholar 

  10. Mayers I, Johnson D, Hurst T, To T (1991) Interactions of tumor necrosis factor and granulocytes with pulmonary vascular resistance. J Appl Physiol 71:2338–2345

    PubMed  CAS  Google Scholar 

  11. Sembowicz A, Hecker M, MacArthur H, Sessa WC, Vane JR (1991) Nitric oxide and another potent vasodilator are formed from NG-hydroxy-L-arginine by cultured endothelial cells. Proc Natl Acad Sci USA 88:11172–11176

    Article  Google Scholar 

  12. Omar HA, Cherry PD, Mortelliti MP, Burke-Wolin T, Wolin MS (1991) Inhibition of coronary artery superoxide dismutase attenuates endothelium-dependent and-independent nitrovasodilatator relaxation. Circ Res 69:601–608

    PubMed  CAS  Google Scholar 

  13. Olesen SP, Chapham DE, Davies PF (1988) Haemodynamic shear stress activates a K+ current in vascular endothelial cells. Nature 331:168–170

    Article  PubMed  CAS  Google Scholar 

  14. Cooke JP, Rossitch E, Andon NA, Loscalzo J, Dzau VJ (1991) Flow activates an endothelial potassium channel to release an endogenous nitrovasodilator. J Clin Invest 88:1663–1671

    Article  PubMed  CAS  Google Scholar 

  15. Granger DL, Hibbs JB, Broadnax LM (1991) Urinary nitrate excretion in relation to murine macrophage activation: influence of dietary L-arginine and oral NG-monomethym-L-arginine. J Immunol 146:1294–1302

    PubMed  CAS  Google Scholar 

  16. Julou-Schaeffer G, Gray GA, Fleming I, Schott C, Parratt JR, Stoclet JC (1990) Loss of vascular responsiveness induced by endotoxin involves L-arginine pathway. Am J Physiol 259: H1038–H1043

    PubMed  CAS  Google Scholar 

  17. Kilbourn RG, Jubran A, Gross SS et al (1990) Reversal of endotoxin-mediated shock by NG-methyl-L-arginine, an inhibitor of nitric oxide synthesis. Biochem Biophys Res Commun 172:1132–1138

    Article  PubMed  CAS  Google Scholar 

  18. Preiser C, Zhang H, Wachel D, Boeynaems JM, Buurman W, Vincent JL (1993) Is the endotoxin-induced hypotension related to nitric oxide formation? Eur Surg Res (in press)

    Google Scholar 

  19. Klabunde RE, Ritger RC (1991) NG-monomethyl-L-arginine (NMA) restores arterial blood pressure but reduces cardiac output in a canine model of endotoxic shock. Biochem Biophys Res Commun 178:1135–1140

    Article  PubMed  CAS  Google Scholar 

  20. Wright CH, Rees DD, Moncada S (1992) Protective and pathological roles of nitric oxide in endotoxin shock. Cardiovasc Res 26:48–57

    Article  PubMed  CAS  Google Scholar 

  21. Nava E, Palmer RM, Moncada S (1991) Inhibition of nitric oxide synthesis in septic shock: how-much is beneficial?. Lancet 338:1555–1557

    Article  PubMed  CAS  Google Scholar 

  22. Nava E, Palmer RM, Moncada S (1992) The role of nitric oxide in endotoxic shock: effects of NG-monomethyl-L-arginine. J Cardiovasc Pharmacol 20:S132–S134

    PubMed  CAS  Google Scholar 

  23. Petros A, Bennett D, Vallance P (1991) Effect of nitric oxide synthase inhibitors on hypotension in patients with septic shock. Lancet 338:1557–1558

    Article  PubMed  CAS  Google Scholar 

  24. Preiser JC, Lejeune P, Roman A, Carlier E, Leeman M, Vincent JL (1993) Use of methylene blue in patients with refractory septic shock. Circ Shock S2:68 (abstract)

    Google Scholar 

  25. Rees DD, Cellek S, Palmer RM, Moncada S (1990) Dexamethasone prevents the induction by endotoxin of a nitric oxide synthase and the associated effects on vascular tone: an insight into endotoxin shock. Biochem Biophys Res Commun 173:541–547

    Article  PubMed  CAS  Google Scholar 

  26. Richter J, Ng-Sikorski J, Olsson I, Andersson T (1990) Tumor necrosis factor-induced degranulation in adherent neutrophils is dependent on CD11b/CD18-integrin-triggered oscillations of cytosolic free Ca2 +. Proc Natl Acad Sci USA 87:9472–9476

    Article  PubMed  CAS  Google Scholar 

  27. Müeski WJ, Winn RK, Vedder NB, Pohlman TH, Harlan JM (1990) Inhibition of CD-18 dependent neutrophil adherence reduces organ injury after hemorrhagic shock in primates. Surgery 108:206–212

    Google Scholar 

  28. Vedder NB, Winn RK, Rice CL, Chi EY, Arfors KE, Harlan JM (1988) A monoclonal antibody to the adherence-promoting leukocyte glycoprotein, CD18, reduces organ injury and improves survival from hemorrhagic shock and resuscitation in rabbits. J Clin Invest 81:939–944

    Article  PubMed  CAS  Google Scholar 

  29. Simpson PJ, Todd RF, Fantone JC, Mickelson JK, Griffin JD, Lucchesi BR (1988) Reduction of experimental canine myocardial reperfusion injury by a monoclonal antibody (anti-MO1, anti-CD11b) that inhibits leukocyte adhesion. J Clin Invest 81:624–629

    Article  PubMed  CAS  Google Scholar 

  30. Eichacker PQ, Farese A, Hoffman WD et al (1992) Leukocyte CD11b/18 antigen-directed monoclonal antibody improves early survival and decreases hypoxemia in dogs challenged with tumor necrosis factor. Am Rev Respir Dis 145:1023–1029

    Article  PubMed  CAS  Google Scholar 

  31. Walsh CJ, Carey PD, Cook DJ, Bechard DE, Fowler AA, Sugerman HJ (1991) Anti-CD18 antibody attenuates neutropenia and alveolar capillary-membrane injury during gram-negative sepsis. Surgery 110:205–212

    PubMed  CAS  Google Scholar 

  32. Sharrar SR, Winn RK, Nurry CE, Harlan JM, Rice CL (1991) A CD18 monoclonal antibody increases the incidence and severity of subcutaneous abscess formation after high-dose staphylococcus aureus injection in rabbits. Surgery 110:213–220

    Google Scholar 

  33. Todd RF, Freyer DR (1988) The CD11/18 leukocyte glycoprotein deficiency. Hematol Oncol Clin North Am 2:13–31

    PubMed  Google Scholar 

  34. Anderson DC, Schmalsteig FC, Arnaout MA (1989) Abnormalities of polymorphonuclear leukocyte function associated with a heritable deficiency of high molecular weight surface glucoproteins (GP138): common relationship to diminished cell adherence. J Clin Invest 74:536–551

    Article  Google Scholar 

  35. Wright SD, Levin SM, Jung MT, Chad Z, Kabbash LG (1989) CR-3 (CD11b/CD18) expresses one binding site for Arg-Gly-Asp containing peptides and a second site for bacterial lipopolysaccharide. J Exp Med 169:175–183

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vincent, JL., Preiser, J.C., Friedman, G., Zhang, H. (1994). Endothelial Cell Function in the Critically Ill. In: Reinhart, K., Eyrich, K., Sprung, C. (eds) Sepsis. Update in Intensive Care and Emergency Medicine, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-85036-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-85036-3_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-85038-7

  • Online ISBN: 978-3-642-85036-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics