Nonlinear Paleoclimatic Variability from Quaternary Records

  • P. Yiou
  • M. Ghil
Part of the NATO ASI Series book series (volume 12)

Abstract

Stable-isotope records from seven marine cores and one ice core provide invaluable information on the intricate behavior of the climatic system over time scales of 104 to 105 years. These records, in conjunction with a simple coupled climate model, help us understand major mechanisms of paleoclimatic variability. The time intervals covered by the records include the last glacial-interglacial cycle. In spite of the difference in the nature of the records, common features are revealed by advanced spectral-analysis tools. The dominant features are the presence of orbital frequencies, on the one hand, and a low number of internal degrees of freedom, on the other. The climatic system appears therefore to act on the Quaternary time scales considered as a forced nonlinear oscillator. The internal mechanisms giving rise to the aperiodic oscillations include ice-albedo feedback, precipitation-temperature feedback, and interactions between the ice sheets and the bedrock.

Keywords

Dust Covariance Sedimentation Convolution Deuterium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bard E, Arnold M, Duprat J, Moyes J, Duplessy JC (1987) Reconstruction of the last deglaciation: Deconvolved records of δ18O profiles, micropaleontological variations and accelerator mass spectrometric 14C dating. Clim Dyn 1: 101–112CrossRefGoogle Scholar
  2. Barnola.JM, Raynaud D, Korotkevitch YN, Lorius C (1987) Vostok ice core provides 160,000-year record of atmospheric CO2. Nature 329: 408–414CrossRefGoogle Scholar
  3. Berger AL (1978) Long-term variations of daily insolation and Quaternary climatic changes. J Geophys Res 35: 2362–2367Google Scholar
  4. Broecker WS, Van Donk J (1970) Insolation changes, ice numbers, and the 180 record in deep-sea cores. Rev Geophys Space Phys 8: 169–197CrossRefGoogle Scholar
  5. Broomhead DS, King GP (1986) Extracting qualitative dynamics from experimental data. Physica D 20: 217–236CrossRefGoogle Scholar
  6. CLIMAP Project Members (1984) The last interglacial ocean. Quatern Res 21: 123–224CrossRefGoogle Scholar
  7. Duplessy JC, Arnold M, Maurice P, Bard E, Duprat J, Moyes J (1986) Direct dating of the oxygen-isotope record of the last deglaciation by 14C accelerator mass spectrometry. Nature 320: 350–352CrossRefGoogle Scholar
  8. Duplessy JC, Moyes J, Pujol C (1980) Deep water formation in the North Atlantic Ocean during the last ice age. Nature 286: 479–482CrossRefGoogle Scholar
  9. Ghil M (1989) Deceptively-simple models of climatic change. In: Berger A, Schneider S, Duplessy JC (eds) Climate and Geosciences. D. Reidel, Dordrecht pp 211–240Google Scholar
  10. Ghil M (1991) Quaternary glaciations: theory and observations. In: Sonnett CP, Giampapa MS, Matthews MS (eds) The Sun in Time. U. of Arizona Press pp 511–542Google Scholar
  11. Ghil M, Childress S (1987) Topics in Geophysical Fluid Dynamics: Atmospheric Dynamics, Dynamo Theory and Climate Dynamics. Springer Verlag, New YorkCrossRefGoogle Scholar
  12. Ghil M, Le Treut H (1981) A climate model with cryodynamics and geodynarnics. J Geophys Res 86 (C6): 5262–5270CrossRefGoogle Scholar
  13. Ghil M, Mo KC (1991) Intraseasonal oscillations in the global atmosphere. Part I: Northern hemisphere and tropics. J Atmos Sci 48 (5): 752–779CrossRefGoogle Scholar
  14. Ghil M, Tavantzis J (1983) Global Hopf bifurcation in a simple climate model. SIAM J Appl Math 43: 1019–1041CrossRefGoogle Scholar
  15. Hays JD, Imbrie J, Shackleton NJ (1976) Variations in the Earth’s orbit: Pacemaker of the ice ages. Science 194: 1121–1132Google Scholar
  16. Imbrie J, Hays JD, Martinson DJ, McIntyre A, Mix AC, Morley JJ, Pisias NG, Prell WL, Shackleton NJ (1984) The orbital theory of Pleistocene climate: Support from a revised chronology of the marine δ180 record. In: Berger A, Imbrie J, Hays J, Kukla G, Saltzman B (eds) Milankovitch and Climate: Understanding the Response to Astronomical Forcing. D. Reidel, Hingham Mass pp 269–305Google Scholar
  17. Jouzel J, Lorius C, Petit JR, Genthon C, Barkov NI, Kotlyakov VM, Petrov VM (1987) Vostok ice core: a continuous temperature record over the last climatic cycle (160,000 years). Nature 329: 403–408CrossRefGoogle Scholar
  18. Jouzel J, Merlivat L (1984) Deuterium and oxygen 18 in precipitation: Modeling of the isotopic effects during snow formation. J Geophys Res 89: 11749–11757Google Scholar
  19. Kallel N, Labeyrie LD, Juillet-Leclerc A, Duplessy JC (1988) A deep hydrological front between intermediate and deep-water masses in the glacial Indian Ocean. Nature 333: 651–655CrossRefGoogle Scholar
  20. Labeyrie LD, Duplessy JC, Blanc PL (1987) Variations in mode of formation and temperature of oceanic deep waters over the past 125,000 years. Nature 327: 477–482CrossRefGoogle Scholar
  21. Le Treut H, Ghil M (1983) Orbital forcing, climatic interactions, and glaciation cycles. J Geophys Res 88: 5167–5190CrossRefGoogle Scholar
  22. Le Treut H, Portès J, Jouzel J, Ghil M (1988) Isotopic modeling of climatic oscillations: implications for a comparative study of marine and ice core records. J Geophys Res 93 (D): 9365–5190CrossRefGoogle Scholar
  23. Lorius C, Jouzel J, Raynaud D, Hansen J, Le Treut H (1990) The ice-core record: climate sensitivity and future greenhouse warming. Nature 347: 139–145CrossRefGoogle Scholar
  24. Lorius C, Jouzel J, Ritz C, Merlivat L, Barkov NI, Kotlyakov VM, Petrov VM (1985) A 150,000 year climatic record from Antarctic ice. Nature 316: 591–596CrossRefGoogle Scholar
  25. Lorius C, Merlivat L (1977) Distribution of mean surface stable isotope values in East Antarctica; observed changes with depth in a coastal area. In: Isotopes and Impurities in Snow and Ice, Proc. Grenoble Symp. IAHS. Vol 118 pp 127–137Google Scholar
  26. Milankovitch M (1941) Kanon der erdbestrahlung und seine anwendung auf das eiszeitenproblem. R Acad Spec Publ ( Translated by the Israeli Program for Scientific Translation, Jerusalem, 1969 )Google Scholar
  27. Oerlemans J, van der Veen J (1984) Ice Sheets and Climate. D. Reidel, Dordrecht Boston LancasterCrossRefGoogle Scholar
  28. Paterne M, Guichard F, Labeyrie J, Gillot PY, Duplessy JC (1986) Tyrrhenian tephrochronology of the oxygen isotope record for the past 60,000 years. Marine Geology 72: 259–285CrossRefGoogle Scholar
  29. Petit JR, Mounier L, Jouzel J, Korotkevitch YS, Kotlyakov VI, Lorius C (1990) Paleoclimato-logical and chronological implications of the Vostok dust record. Nature 343: 56–58CrossRefGoogle Scholar
  30. Petit JR, Mounier L, Jouzel J, Korotkevitch YS, Kotlyakov VI, Lorius C (1990) Paleoclimato-logical and chronological implications of the Vostok dust record. Nature 343: 56–58CrossRefGoogle Scholar
  31. Saltzman B (1987) Carbon dioxyde and the 6180 record of late-Quaternary climatic change: a global model. Clim Dyn 1: 77–85CrossRefGoogle Scholar
  32. Sarnthein M, Winn K, Duplessy JC, Fontugne MR (1988) Global variations of surface ocean productivity in low and mid latitudes: Influence on CO2 reservoirs of the deep ocean and atmosphere during the last 21,000 years. Paleoceanography 3: 361–399CrossRefGoogle Scholar
  33. Shackleton NJ (1967) Oxygen isotope analyses and Pleistocene temperatures re-assessed. Nature 215: 15–17CrossRefGoogle Scholar
  34. Shackleton NJ, Imbrie J, Hall MA (1983) Oxygen and carbon isotope record of East Pacific core V19–30: Implications for the formation of deep water in the Late Pleistocene North Atlantic. Earth Planet Sci Lett 65: 233–244Google Scholar
  35. Shackleton NJ, Pisias NG (1985) Atmospheric carbon dioxyde, orbital forcing, and climate. In: The carbon cycle and atmospheric CO2: natural variations Archean to present. Vol 32 of Geophysical Monographs AGU, Washington D. C.Google Scholar
  36. Thomson DJ (1982) Spectrum estimation and harmonic analysis. IEEE Proc 70 (9): 1055–1096CrossRefGoogle Scholar
  37. Van Campo E, Duplessy JC, Prell WL, Barratt N, Sabatier R (1990) Comparison of terrestrial and marine temperature estimates for the past 135 kyr off southeast Africa: a test for GCM simulations of palaeoclimate. Nature 348: 209–212CrossRefGoogle Scholar
  38. Vantard R, Ghil M (1989) Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series. Physica D 35: 395–424CrossRefGoogle Scholar
  39. Vautard R, Yiou P, Ghil M (1992) Singular spectrum analysis: a toolkit for short noisy chaotic signals. Physica D 58: 95–126CrossRefGoogle Scholar
  40. Yiou P, Genthon C, Jouzel J, Ghil M, Le Trent H, Barnola JM, Lorius C, Korotkevitch YN (1991) High-frequency paleovariability in climate and in CO2 levels from Vostok ice-core records. J Geophys Res 96 (B12): 20365–20378CrossRefGoogle Scholar
  41. Yiou P, Ghil M, Jouzel J, Paillard D, Vautard R (1992) Nonlinear variability of the climatic system, from singular and power spectra of Quaternary records. Clim Dyn (submitted)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • P. Yiou
    • 1
  • M. Ghil
    • 2
  1. 1.Laboratoire de Modélisation du Climat et de l’Environnement/DSMCEN de SaclayGif-sur-YvetteFrance
  2. 2.Climate Dynamics Center, Department of Atmospheric Sciences, and Institute of Geophysics and Planetary PhysicsUniversity of CaliforniaLos AngelesUSA

Personalised recommendations