Skip to main content

Measuring Body Composition in Intensive Care Patients

  • Chapter
Metabolic Support of the Critically Ill Patient

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICM,volume 17))

Abstract

Body composition research has led to a better understanding of the molecular structure of the body which has enhanced clinical care in many areas including critical care medicine. For many years, body composition measuring technology has not been adequate to enable its practical use in intensive care environments. However, new advances have opened the possibility for body composition measurements to be obtained not only for the evaluation of therapies used in intensive care patients, but also for the daily care of critically ill patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wang ZM, Pierson RN Jr, Heymsfield SB (1992) The five-level model: A new approach to organizing body-composition research. Am J Clin Nutr 56:19–28

    PubMed  CAS  Google Scholar 

  2. Kinney JM, Moore FD (1956) Carbon balance. A clinical approach to energy exchange. Surgery 40:16–26

    PubMed  CAS  Google Scholar 

  3. Yasumura S, Cohn SH, Ellis KJ (1983) Measurement of extracellular space by total body neutron activation. Am J Physiol 244:R360–R404

    Google Scholar 

  4. Beddoe AH, Streat SJ, Hill GL (1984) Evaluation of an in vivo prompt gamma neutron activation facility for body composition studies in critically ill intensive care patients: Results on 41 normals. Metabolism 33:270–280

    Article  PubMed  CAS  Google Scholar 

  5. von Hevesy G, Hofer E (1934) Elimination of water from the human body. Nature 134:879

    Article  Google Scholar 

  6. Streat SJ, Beddoe AH, Hill GL (1985) Measurement of total body water in intensive care patients with fluid overload. Metabolism 34:688–694

    Article  PubMed  CAS  Google Scholar 

  7. Culebras JM, Moore FD (1977) Total body water and the exchangeable hydrogen. Theoretical calculations of nonaqueous exchangeable hydrogen in man. Am J Physiol 232: R54–R59

    PubMed  CAS  Google Scholar 

  8. Mazess RB, Barden HS, Bisek, JP, Hanson J (1990) Dual energy X-ray absorptiometry for total body and regional bone mineral and soft tissue composition. Am J Clin Nutr 51:1106–1121

    PubMed  CAS  Google Scholar 

  9. Mazess RB, Collick B, Trempe J, Barden H, Hanson J (1989) Performance evaluation of a dual-energy X-ray bone densitometer. Calcif Tissue Int 44:228–232

    Article  PubMed  CAS  Google Scholar 

  10. Haarbo J, Gotfredsen A, Hassager C, Christiansen C (1991) Validation of body composition by dual energy X-ray absorptiometry. Clin Physiol 11:331–341

    Article  PubMed  CAS  Google Scholar 

  11. Gotfredsen A, Borg J, Christiansen C, Mazess RB (1984) Total body bone mineral in vivo by dual photon absorptiometry. II. Accuracy. Clin Physiol 4:357–362

    Article  PubMed  CAS  Google Scholar 

  12. ICRP (1975) Report of the task group on reference man. ICRP Report 23. Pergamon, Oxford

    Google Scholar 

  13. Askanazi J, Carpentier YA, Elwyn DH, et al (1980) Influence of total parenteral nutrition on fuel utilisation in injury and sepsis. Ann Surg 191:40–46

    Article  PubMed  CAS  Google Scholar 

  14. Parry BR (1987) The energy needs of surgical patients. Thesis. University of Otago, New Zealand

    Google Scholar 

  15. Hill GL, Stokes MA, Burkinshaw L (1990) Total body glycogen - A proposed technique for measurement in severely ill patients. Aust NZ J Surg 60:715

    Google Scholar 

  16. Streat SJ, Beddoe AH, Hill GL (1987) Aggressive nutritional support does not prevent protein loss despite fat gain in septic intensive care patients. J Trauma 27:262–266

    Article  PubMed  CAS  Google Scholar 

  17. Stokes MA, Hill GL (1990) A new method for the measurement of total energy expenditure in severely ill patients. Aust NZ J Surg 60:715

    Article  Google Scholar 

  18. Hill GL, Knight GS, Stokes MA, Plank LD (1992) Body composition in patient care. In: Kral JG, van Itallie TB (eds) Recent developments in body composition analysis: Methods and applications, Smith-Gordon, London, pp 129–135

    Google Scholar 

  19. Moore FD, Olesen KH, McMurray JD, Parker HD, Ball MR, Boyden CM (1963) The body cell mass and its supporting environment: Body composition in health and disease. WB Saunders, Philadelphia

    Google Scholar 

  20. Moore FD (1980) Energy and maintenance of the body cell mass. JPEN 4:228–260

    Article  CAS  Google Scholar 

  21. Burkinshaw L, Hill GL, Morgan DB (1978) Assessment of the distribution of protein in the human body by in vivo neutron activation analysis. In: Nuclear activation techniques in the life sciences, International Atomic Energy Agency, Vienna pp 787–798

    Google Scholar 

  22. Cohn SH, Vartsky D, Yasumura S, Vaswani AN, Ellis KJ (1983) Indexes of body cell mass: Nitrogen versus potassium. Am J Physiol 244:E305–E310

    PubMed  CAS  Google Scholar 

  23. Hill GL (1992) Disorders of nutrition and metabolism in clinical surgery - Understanding and management. Churchill Livingstone, Edinburgh

    Google Scholar 

  24. Moore FD (1959) Metabolic care of the surgical patient. WB Saunders, Philadelphia

    Google Scholar 

  25. Shires GT, Williams J, Brown F (1960) Simultaneous measurement of plasma volume, extracellular fluid volume, and red blood cell mass in man utilizing I131, S35O4, and Cr51. J Lab Clin Med 55:776–783

    PubMed  CAS  Google Scholar 

  26. Walser M, Seldin DW, Grollman A (1953) An evaluation of radiosulfate for the determination of extracellular fluid in man and dogs. J Clin Invest 32:299–311

    Article  PubMed  CAS  Google Scholar 

  27. Barratt TM, Walser M (1969) Extracellular fluid in individual tissues and in whole animals: The distribution of radiosulfate and radiobromide. J Clin Invest 48:56–66

    Article  PubMed  CAS  Google Scholar 

  28. Brodie BB, Brand E, Leshin S (1939) The use of bromide as a measure of extracellular fluid. J Biol Chem 130:555–563

    CAS  Google Scholar 

  29. Moore FD, Shires GT (1967) Moderation. Ann Surg 166:300–301

    Article  PubMed  CAS  Google Scholar 

  30. Hannon RJ, Boston VE (1990) Fluid and ion redistribution in skeletal muscle in an animal sepsis model. J Paediat Surg 25:599–603

    Article  CAS  Google Scholar 

  31. Mitra S, Plank LD, Knight GS, Hill GL (1993) In vivo measurement of total body chlorine using the 8.57 MeV prompt de-excitation following thermal neutron capture. Phys Med Biol 38:161–172

    Article  PubMed  CAS  Google Scholar 

  32. Tokunaga K, Matsuzawa Y, Ishikawa K, Tarai S (1988) A novel technique for the determination of body fat by computed tomography. Int J Obesity 7:437–45

    Google Scholar 

  33. Fuller MF, Foster MA, Hutchison JMS (1985) Estimation of body fat by nuclear magnetic resonance imaging. Proc Nutr Soc 44:108A

    Google Scholar 

  34. Fowler PA, Fuller MF, Glasbey CA, Cameron GG, Foster MA (1992) Validation of the in vivo measurement of adipose tissue by magnetic resonance imaging of lean and obese pigs. Am J Clin Nutr 56:7–13

    PubMed  CAS  Google Scholar 

  35. Schlemmer A, Hassager C, Haarbo J, Christiansen C (1990) Direct measurement of abdominal fat by dual photon absorptiometry. Int J Obesity 14:603–611

    CAS  Google Scholar 

  36. Heymsfield SB, Smith R, Aulet M, et al (1990) Appendicular skeletal muscle mass: Measurement by dual-photon absorptiometry. Am J Clin Nutr 52:214–218

    PubMed  CAS  Google Scholar 

  37. Lukaski HC, Johnson PE, Bolonchuk WW, Lykken GI (1985) Assessment of fat-free mass using bioelectrical impedance measurements of the human body. Am J Clin Nutr 41:810–817

    PubMed  CAS  Google Scholar 

  38. Khaled MA, McCutcheon MJ, Reddy S, Pearman PL, Hunter GR, Weinsier RL (1988) Electrical impedance in assessing human body composition: The BIA method. Am J Clin Nutr 47:789–792

    PubMed  Google Scholar 

  39. Segal KR, van Loan M, Fitzgerald PI, Hodgdon JA, van Itallie TB (1988) Lean body mass estimation by bioelectrical impendance analysis: A four-site cross-validation study. Am J Clin Nutr 47:7–14

    PubMed  CAS  Google Scholar 

  40. Kushner RF, Schoeller DA (1986) Estimation of total body water by bioelectrical impedance analysis. Am J Clin Nutr 44:417–424

    PubMed  CAS  Google Scholar 

  41. Meguid MM, Lukaski HC, Tripp MD, Rosenburg JM, Parker FB (1992) Rapid bedside method to assess changes in postoperative fluid status with bioelectrical impedance analysis. Surgery 112:502–508

    PubMed  CAS  Google Scholar 

  42. Kurtin PS, Shapiro AC, Tomita H, et al (1990) Volume status and body composition of chronic dialysis patients: Utility of bioelectric impedance plethysmography. Am J Nephrol 10:363–367

    Article  PubMed  CAS  Google Scholar 

  43. Zillikens MC, van den Berg JWO, Wilson JHP, Swart GR (1992) Whole-body and segmental bioelectrical-impedance analysis in patients with cirrhosis of the liver: Changes after treatment of ascites. Am J Clin Nutr 55:621–625

    PubMed  CAS  Google Scholar 

  44. Schroeder D, Christie PM, Hill GL (1990) Bioelectric impedance analysis for body composition: Clinical evaluation in general surgical patients. JPEN 14:129–133

    Article  CAS  Google Scholar 

  45. Dal Cin S, Braga M, Molinari M, Cristallo M, Di Carlo V (1991) Reliability of bioelectrical impedance analysis in dehydrated subjects. Clin Nutr 10(Suppl):9

    Article  Google Scholar 

  46. Duerenberg P, Schouten FJM (1992) Loss of total body water and extracellular water assessed by multifrequency impedance. Eur J Clin Nutr 46:247–255

    Google Scholar 

  47. Segal KR, Burastero S, Chun A, Coronel P, Pierson RN Jr, Wang J (1991) Estimation of extracellular and total body water by multiple-frequency bioelectrical-impedance measurement. Am J Clin Nutr 54:26–29

    PubMed  CAS  Google Scholar 

  48. Streat SJ, Hill GL (1987) Nutritional support in the management of critically ill patients in surgical intensive care. World J Surg 11:194–201

    Article  PubMed  CAS  Google Scholar 

  49. Streat SJ, Beddoe AH, Hill GL (1985) Measurement of body fat and hydration of the fat-free body in health and disease. Metabolism 34:509–518

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hill, G.L., Monk, D., Plank, L.D. (1993). Measuring Body Composition in Intensive Care Patients. In: Wilmore, D.W., Carpentier, Y.A. (eds) Metabolic Support of the Critically Ill Patient. Update in Intensive Care and Emergency Medicine, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-85011-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-85011-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-85013-4

  • Online ISBN: 978-3-642-85011-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics