Skip to main content

The Role of Herpes Simplex Virus Thymidine Kinase Expression in Pathogenesis and Latency

  • Chapter
Pathogenicity of Human Herpesviruses due to Specific Pathogenicity Genes

Part of the book series: Frontiers of Virology ((FRVIROLOGY,volume 3))

Summary

The role of herpes simplex virus (HSV) thymidine kinase (TK) expression for HSV neurovirulence and latency has been evaluated by many investigators. Although neurovirulence is complex and involves multiple host and viral factors, in studies with HSV TK-negative (TK) mutants, it seemed that TK expression was an important factor. This was apparent in experimental animal studies, as indicated by decreased replication of TK HSV mutants in neural tissue and by decreased mortality. Although some virulent TK HSV mutants have been reported, most investigators, including studies with HSV deletion mutants, have supported an important role for HSV TK expression and neurovirulence.

In early experimental animal studies in which HSV latency was defined by the ability to recover HSV from explants of latently infected ganglia, HSV TK expression also seemed important for latency. In more recent studies in which molecularly constructed TK HSV mutants were utilized, it was evident that ganglia could be infected with TK HSV so that HSV latency-associated transcript (LAT) was detected in ganglia during the period of latency. As in most previous studies, reactivation of TK HSV was not usually detected in ganglion explants. TK HSV could be rescued from such ganglia, however, by superinfection-complementation with TK+ HSV. These observations suggested that HSV TK expression was important for the reactivation of HSV from latent sensory ganglion neuron infection.

In recent, more speculative studies, the HSV tk gene and HSV TK mutants have been utilized therapeutically in experimental animal studies. In some of these studies, HSV TK expression was induced in neoplastic cells, which were then destroyed by TK-mediated antivirals. In other studies, TK HSV was used to destroy rapidly growing tumor cells or, alternatively, TK HSV was used to incorporate foreign genes into the nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen GP, McGowan JJ, Gentry Ga, Randall CC (1978) Biochemical transformation of deoxythymidine kinase-deficient mouse cells with UV-irradiated equine herpesvirus type 1. J Virol 28: 361–367

    PubMed  CAS  Google Scholar 

  • Al-Shawi R, Burke J, Wallace H, Jones C, Harrison S, Buxton D, Maley S, Chandley A, Bishop JO (1991) The herpes simplex virus type 1 thymidine kinase is expressed in the testes of transgenic mice under the control of a cryptic promoter. Mol Cell Biol 11: 4207–4216

    PubMed  CAS  Google Scholar 

  • Bacchetti S, Graham FL (1977) Transfer of the gene for thymidine kinase to thymidine kinase-deficient human cells by purified herpes simplex viral DNA. Proc Natl Acad Sci USA 74: 1590–1594

    PubMed  CAS  Google Scholar 

  • Birch CJ, Tyssen DP, Tachedjian G, Doherty R, Hayes K, Mijch A, Lucas CR (1992) Clinical effects and in vitro studies of trifluorothymidine combined with interferon-a for treatment of drug-resistant and -sensitive herpes simplex virus infections. J Infect Dis 166: 108–112

    PubMed  CAS  Google Scholar 

  • Borrelli E, Heyman RA, Arias C, Sawchenko PE, Evans RM (1989) Transgenic mice with inducible dwarfism. Nature 339: 538–541

    PubMed  CAS  Google Scholar 

  • Burns WH, Saral R, Santos GW, Laskin OL, Lietman PS, McLaren C, Barry DW (1982) Isolation and characterization of resistant herpes simplex virus after acyclovir therapy. Lancet 1: 421–423

    PubMed  CAS  Google Scholar 

  • Chatis PA, Miller CH, Schrager LE, Crumpacker CS (1989) Successful treatment with foscarnet of an acyclovir-resistant mucocutaneous infection with herpes simplex virus in a patient with acquired immunodeficiency syndrome. N Engl J Med 320: 297–300

    PubMed  CAS  Google Scholar 

  • Chen MS, Prusoff WH (1978) Association of thymidylate kinase activity with pyrimidine deoxyribonucleoside kinase induced by herpes simplex virus. J Biol Chem 253: 1325–1327

    PubMed  CAS  Google Scholar 

  • Cheng Y-C (1977) A rational approach to the development of antiviral chemotherapy: alternative substrates of herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) thymidine kinase (TK). Ann NY Acad Sci 284: 594–598

    PubMed  CAS  Google Scholar 

  • Cheng Y-C, Ostrander M (1976) Deoxythymidine kinase induced in HeLa TK-cells by herpes simplex virus type I and type II. J Biol Chem 251: 2605–2610

    PubMed  CAS  Google Scholar 

  • Cheng Y-C, Schinazi RF, Dutschman GE, Tan RS, Grill SP (1982) Virus-induced thymidine kinases as markers for typing herpes simplex viruses and for drug sensitivity assays. J Virol Methods 5: 209–217

    PubMed  CAS  Google Scholar 

  • Chiocca EA, Choi BB, Cai W, DeLuca NA, Schaffer PA, DiFiglia M, Breakefield OX, Martuza RL (1990) Transfer and expression of the lac Z gene in rat brain neurons mediated by herpes simplex virus mutants. New Biol 2: 739–745

    PubMed  CAS  Google Scholar 

  • Coen DM, Schaffer PA (1980) Two distinct loci confer resistance to acycloguanosine in herpes simplex virus type 1. Proc Natl Acad Sci USA 77: 2265–2269

    PubMed  CAS  Google Scholar 

  • Coen DM, Fleming HE Jr, Leslie LK, Retondo MJ (1985) Sensitivity of arabinosyladenineresistant mutants of herpes simplex virus to other antiviral drugs and mapping of drug hypersensitivity mutations to the DNA polymerase locus. J Virol 53: 477–488

    PubMed  CAS  Google Scholar 

  • Coen DM, Kosz-Vnenchak M, Jacobson JG, Leib DA, Bogard CL, Schaffer PA, Tyler KL, Knipe DM (1989a) Thymidine Kinase-Negative herpes simplex virus mutants establish latency in mouse trigeminal ganglia but do not reactivate. Proc Natl Acad Sci USA 86: 4736–4740

    PubMed  CAS  Google Scholar 

  • Coen DM, Irmiere AF, Jacobson JG, Kerns KM (1989b) Low levels of herpes simplex virus thymidine-thymidylate kinase are not limiting for sensitivity to certain antiviral drugs or for latency in a mouse model. Virology 168: 221–231

    PubMed  CAS  Google Scholar 

  • Cooper GM (1973) Phosphorylation of 5-bromodeoxycytidine in cells infected with herpes simplex virus. Proc Natl Acad Sci USA 70: 3788–3792

    PubMed  CAS  Google Scholar 

  • Cremer KJ, Bodemer M, Summers WP, Summers WC, Gesteland RF (1979) In vitro suppression of UAG and UGA mutants in the thymidine kinase gene of herpes simplex virus. Proc Natl Acad Sci USA 76: 430–434

    PubMed  CAS  Google Scholar 

  • Crumpacker CS, Schnipper LE, Marlowe SI, Kowalsky PN, Hershey BJ, Levin MJ (1982) Resistance to antiviral drugs of herpes simplex virus isolated from a patient treated with acyclovir. N Engl J Med 306: 343–346

    PubMed  CAS  Google Scholar 

  • Crumpacker CS, Kowalsky PN, Oliver SA, Schnipper LE, Field AK (1984) Resistance of herpes simplex virus to a 9-[2-hydroxy-1-(hydroxymethy) ethoxy]methyl guanine: physical mapping of drug synergism within the viral DNA polymerase locus. Proc Natl Acad Sci USA 81: 1556–1560

    PubMed  CAS  Google Scholar 

  • Darby G, Field HJ, Salisbury SA (1981) Altered substrate specificity of herpes simplex virus thymidine kinase confers acyclovir-resistance. Nature 289: 81–83

    PubMed  CAS  Google Scholar 

  • Darby G, Churcher MJ, Larder BA (1984) Cooperative effects between two acyclovir resistance loci in herpes simplex virus. J Virol 50: 838–846

    PubMed  CAS  Google Scholar 

  • Darby G, Larder BA, Inglis MM (1986) Evidence that the “active centre” of the herpes simplex virus thymidine kinase involves an interaction between three distinct regions of the polypeptide. J Gen Virol 67: 753–758

    CAS  Google Scholar 

  • de Jong JT, Aker J, den Dulk H, van de Putte P, Giphart-Gassler M (1989) Cytosine methylation in the EcoR 1 site of active and inactive herpesvirus thymidine kinase promoters. Biochim Biophys Acta 1008: 62–70

    Google Scholar 

  • Derse D, Cheng Y-C, Furman PA,St. Clair MH, Elion GB (1981) Inhibition of purified human and herpes simplex virus-induced DNA polymerases by 9-(2-hydroxyethoxymethyl) guanine triphosphate. Effects on primer-template function. J Biol Chem 256: 11447–11451

    PubMed  CAS  Google Scholar 

  • Dobersen MJ, Jerkofsky M, Greer S (1976) Enzymatic basis for the selective inhibition of varicella-zoster virus by 5-halogenated analogues of de oxycytidine. J Virol 20: 478–486

    PubMed  CAS  Google Scholar 

  • Dubbs DR, Kit S (1964) Mutant strains of herpes simplex deficient in thymidine kinase-inducing activity. Virology 22: 493–502

    PubMed  CAS  Google Scholar 

  • Dundarov S, Dundarova D, Todorov S, Kavaklova L, Falke D (1978) Induction capacity and influence of dThdMP on thymidine kinase activity of type 1 and 2 strains of herpes simplex virus. Arch Virol 56: 243–249

    PubMed  CAS  Google Scholar 

  • Efstathiou S, Kemp S, Darby G, Minson AC (1989) The role of herpes simplex virus type 1 thymidine kinase in pathogenesis. J Gen Virol 70: 869–879

    PubMed  CAS  Google Scholar 

  • Elion GB, Furman PA, Fyfe JA, deMiranda P, Beauchamp L, Schaeffer HJ (1977) Selectivity of action of an antiherpetic agent 9-(2-hydroxyethoxymethyl) guanine. Proc Natl Acad Sci USA 74: 5716–5720

    PubMed  CAS  Google Scholar 

  • El Kareh A, Murphy AJM, Fichter T, Efstratiadis A (1985) “Transactivation” control signals in the promoter of the herpesvirus thymidine kinase gene. Proc Natl Acad Sci USA 82:1002–1006

    Google Scholar 

  • Ellis MN, Waters R, Hill EL, Lobe DC, Selleseth DW, Barry DW (1989) Orofacial infection of athymic mice with defined mixtures of acyclovir-susceptible and acyclovir-resistant herpes simplex virus type 1. Antimicrob Agents Chemother 33: 304–310

    PubMed  CAS  Google Scholar 

  • Erlich KS, Mills J, Chatis P, Mertz GJ, Busch DF, Follansbee SE, Grant RM, Crumpacker CS (1989) Acyclovir-resistant herpes simplex virus infections in patients with the acquired immunodeficiency syndrome. N Engl J Med 320: 293–296

    PubMed  CAS  Google Scholar 

  • Ezzeddine ZD, Martuza RL, Platika D, Short MP, Malick A, Choi B, Breakefield XO (1991) Selective killing of glioma cells in culture and in vivo by retrovirus transfer of the herpes simplex virus thymidine kinase gene. New Biol 3: 608–614

    PubMed  CAS  Google Scholar 

  • Fang Z-Y, Tenser RB, Rapp F (1983) Hepatic infection by thymidine kinase-positive and thymidine kinase-negative herpes simplex virus after partial hepatectomy. Infect Immun 42: 402–408

    PubMed  CAS  Google Scholar 

  • Field HJ, Darby G (1980) Pathogenicity in mice of strains of herpes simplex virus which are resistance to acyclovir and vitro and in vivo. Antimicrob Agents Chemother 17: 209–216

    PubMed  CAS  Google Scholar 

  • Field HJ, Lay E (1984) Characterization of latent infections in mice inoculated with herpes simplex virus which is clinically resistant to acyclovir. Antiviral Res 4: 43–52

    PubMed  CAS  Google Scholar 

  • Field HJ, Wildly P (1978) The pathogencity of thymidine kinase-dificient mutants of herpes simplex in mice. J Hyg 81: 267 277

    Google Scholar 

  • Friedmann T (1989) Progress toward human gene therapy. Science 244: 1275–1281

    PubMed  CAS  Google Scholar 

  • Fyfe JA, Keller PM, Furman PA, Miller RL, Elion GB (1978) Thymidine kinase from herpes simplex virus phosphorylates the new antiviral compound 9-(2-hydroxyethoxymethyl) guanine. J Biol Chem 253: 8721–8727

    PubMed  CAS  Google Scholar 

  • Fyfe JA, McKee SA, Keller PM (1983) Altered thymidine-thymidylate kinases from strains of herpes simplex virus with modified drug sensitivities to acyclovir and (E)-5-(2 bromovinyl)2’-deoxyuridine. Mol Pharmacod 24: 316–323

    CAS  Google Scholar 

  • Gordon YJ, Gilden DM, Becher Y (1983) HSV-1 thymidine kinase promotes virulence and latency in the mouse. Invest Ophthalmol Vis Sci 24: 599–602

    PubMed  CAS  Google Scholar 

  • Gordon YJ, Rao H, Arullo-Cruz T (1984) Immunosuppression promotes ocular virus replication and CNS neurovirulence following corneal inoculation with an avirulent herpes simplex type 1 thymidine kinase negative mutant. Curr Eye Res 3: 651–657

    PubMed  CAS  Google Scholar 

  • Graessmann A, Graessmann M (1988) DNA methylation, chromotin structure and regulation of herpes simplex virus tk gene expression. Gene 74: 135–137

    PubMed  CAS  Google Scholar 

  • Griffin AM, Boursnell MEG (1990) Analysis of the nucleotide sequence of DNA from the region of the thymidine kinase gene of infectious laryngotracheitis virus: potential evolutionary relationships between the herpes virus subfamilies. J Gen Virol 71: 841–850

    PubMed  CAS  Google Scholar 

  • Gronowitz JS, Kallander CFR (1980) Optimized assay for thymidine kinase and its applications to the detection of antibodies against herpes simplex virus type 1- and 2-induced thymidine kinase. Infect Immun 29: 425–434

    PubMed  CAS  Google Scholar 

  • Gross MK, Merrill GF (1989) Thymidine kinase synthesis is repressed in nonreplicating muscle cells by a translational mechanism that does not affect the polysomal distribution of thymidine kinase mRNA. Proc Natl Acad Sci USA 86: 4987–4991

    PubMed  CAS  Google Scholar 

  • Halliburton IW, Morse LS, Roizman B, Quinn KE (1980) Mapping of the thymidine kinase genes of type 1 and type 2 herpes simplex viruses using intertypic recombinants. J Gen Virol 49: 235–253

    PubMed  CAS  Google Scholar 

  • Halliburton IW, Honess RW, Killington RA (1987) Virulence is not conserved in recombinants between herpes simplex virus types 1 and 2. J Gen Virol 68: 1435–1440

    PubMed  Google Scholar 

  • Harrison PT, Thompson R, Davison AJ (1991) Evolution of herpesvirus thymidine kinase from cellular deoxycytidine kinase. J Gen Virol 72: 2583–2586

    PubMed  CAS  Google Scholar 

  • Heyman RA, Borrelli E, Lesley J, Anderson D, Richman DD, Baird SM, Hyman R, Evans RM (1989) Thymidine kinase obliteration: creation of transgenic mice with controlled immune deficiency. Proc Natl Acad Sci USA 86: 2698 2702

    Google Scholar 

  • Hill EL, Hunter GA, Ellis MN (1991) In vitro and in vivo characterization of herpes simplex virus clinical isolates recovered from patients infected with human immunodeficiency virus. Antimicrob Agents Chemother 35: 2322–2328

    PubMed  CAS  Google Scholar 

  • Ho DY (1992) Herpes simplex virus latency: molecular aspects. Prog Med Virol 39: 76–115

    PubMed  CAS  Google Scholar 

  • Ho DY, Mocarski ES (1988) (3-Galactosidase as a marker in the peripheral and neural tissues of the herpes simplex virus-infected mouse. Virology 167: 279–283

    PubMed  CAS  Google Scholar 

  • Honess RW, Watson DN (1974) Herpes simplex virus-specific polypeptides studies by polyacrylamide gel electrophoresis of immune precipitates. J Gen Virol 22: 171–185

    PubMed  CAS  Google Scholar 

  • Honess RW, O’Hare PO, Young D (1982) Comparison of thymidine kinase activities induced in cells productively infected with herpesvirus saimiri and herpes simplex virus. J Gen Virol 58: 237–249

    PubMed  CAS  Google Scholar 

  • Honess RW, Craxton MA, Williams L, Gompels UA (1989) A comparative analysis of the sequence of the thymidine kinase gene of a gammaherpesvirus, herpesvirus saimiri. J Gen Virol 70: 3003–3013

    PubMed  CAS  Google Scholar 

  • Izant JG, Weintraub H (1984) Inhibition of thymidine kinase gene expression by anti-sense RNA: a molecular approach to genetic analysis. Cell 36: 1007–1015

    PubMed  CAS  Google Scholar 

  • Izumi KM, Stevens JG (1988) Two thymidine kinase deficient herpes simplex viruses exhibit unexpected virulence properties. Microbiol Pathogen 4: 145–153

    CAS  Google Scholar 

  • Jacobson JG, Martin SL, Coen DM (1989) A conserved open reading frame that overlaps the herpes simplex virus thymidine kinase gene is important for viral growth in cells culture. J Virol 63: 1839–1843

    PubMed  CAS  Google Scholar 

  • Jamieson AT, Subak-Sharpe JH (1978) Interallelic complementation of mutants of herpes simplex virus deficient in deoxypyrimidine kinase activity. Virology 85: 109–117

    PubMed  CAS  Google Scholar 

  • Jamieson AT, Gentry GA, Subak-Sharpe JH (1974) Induction of both thymidine and deoxycytidine kinase activity by herpes virus. J Gen Virol 24: 465–480

    PubMed  CAS  Google Scholar 

  • Kim SK, Wold BJ (1985) Stable reduction of thymidine kinase activity in cells expressing high levels of anti-sense RNA. Cell 42: 129–138

    PubMed  CAS  Google Scholar 

  • Kit S (1985) Thymidine kinase. Microbiol Sci 2: 369–375

    PubMed  CAS  Google Scholar 

  • Kit S, Dubbs DR (1963) Acquisition of thymidine kinase activity by herpes simplex infected mouse fibroblast cells. Biochem Biophys Res Commun 11: 55–59

    PubMed  CAS  Google Scholar 

  • Kit S, Kit M, Pirtle EC (1985) Attenuated properties of thymidine kinase-negative deletion mutant of pseudorabies virus. Am J Vet Res 46: 1359–1367

    PubMed  CAS  Google Scholar 

  • Kit S, Kit M, Ichimura H, Crandell R, McConnell S (1986) Induction of thymidine kinase activity by viruses with group B DNA genomes: bovine cytomegalovirus (bovine herpes-virus 4). Virus Res 4: 197–212

    PubMed  CAS  Google Scholar 

  • Klein RJ (1982) Acyclovir-resistant herpes simplex virus. N Engl J Med 307: 681–682

    Google Scholar 

  • Klein RJ, DeStefano E, Brady E, Friedman-Kien AE (1980) Experimental skin infection with an acyclovir resistant herpes simplex virus mutant: response to antiviral treatment and protection against reinfection. Arch Virol 65: 237–246

    PubMed  CAS  Google Scholar 

  • Klemperer HG, Haynes GR, Shedden WIH, Watson DH (1967) A virus-specific thymidine kinase in BHK21 cells infected with herpes simplex virus. Virology 31: 120–128

    PubMed  CAS  Google Scholar 

  • Kosz-Vnenchak M, Coen DM, Knipe DM (1990) Restricted expression of herpes simplex virus lytic genes during establishment of latent infection by thymidine kinase-negative mutant viruses. J Virol 64: 5396–5402

    PubMed  CAS  Google Scholar 

  • Larder BA, Darby G (1982) Properties of a novel thymidine kinase induced by an acyclovirresistant herpes simplex virus type 1 mutant. J Virol 42: 649–658

    PubMed  CAS  Google Scholar 

  • Larder BA, Cheng Y-C, Darby G (1983) Characterization of abnormal thymidine kinases induced by drug-resistant strains of herpes simplex virus type 1. J Gen Virol 64: 523–532

    PubMed  CAS  Google Scholar 

  • Lawson SN, Biscoe TJ (1979) Development of mouse dorsal root ganglia: an autoradiographic and quantitative study. J Neurocytol 8: 265–274

    PubMed  CAS  Google Scholar 

  • Leib DA, Coen DM, Bogard CL, Hicks KA, Yager DR, Knipe DM, Tyler KL, Schaffer PA (1989a) Immediate-early regulatory gene mutants define different stages in the establishment and reactivation of herpes simplex virus latency. J Virol 63: 759–768

    PubMed  CAS  Google Scholar 

  • Leib DA, Bogard CL, Kosz-Vnenchak M, Hicks KA, Coen DM, Knipe DM, Schaffer PA (1989b) A deletion mutant of the latency-associated transcript of herpes simplex virus type 1 reactivates from the latent state with reduced frequency. J Virol 63: 2893–2900

    PubMed  CAS  Google Scholar 

  • Leib DA, Ruffner KL, Hildebrand C, Schaffer PA, Wright GE, Coen DM (1990) Specific inhibitors of herpes simplex virus thymidine kinase diminish reactivation of latent virus from explanted murine ganglia. Antimicrob Agents Chemother 34: 1285–1286

    PubMed  CAS  Google Scholar 

  • Leist TP, Sandri-Goldin RM, Stevens JG (1989) Latent infections in spinal ganglia with thymidine kinase-deficient herpes simplex virus. J Virol 63: 4976–4978

    PubMed  CAS  Google Scholar 

  • Lettler E, Arrand JR (1988) Characterization of the Epstein-Barr virus-encoded thymidine kinase expressed in heterologous eucaryotic and procaryotic systems. J Virol 62: 3892–3895

    Google Scholar 

  • Liu Q, Summers WC (1988) Site-directed mutagenesis of a nucleotide-binding domain in HSV-1 thymidine kinase: effects on catalytic activity. Virology 163: 638–642

    PubMed  CAS  Google Scholar 

  • Mahalingham R, Cabirac G, Wellish M, Gilden D (1990) In-vitro synthesis of functional varicella zoster and herpes simplex viral thymidine kinase. Virus Genes 4: 105–120

    Google Scholar 

  • Maitland NJ, McDougall JK (1977) Biochemical transformation of mouse cells by fragments of herpes simplex virus DNA. Cell 11: 233–241

    PubMed  CAS  Google Scholar 

  • Marcialis MA, LaColla P, Schivo ML, Flore O, Firinu A, Loddo B (1975) Low virulence and immunogenicity in mice and in rabbits of variants of herpes simplex virus resistant to 5-iodo2-deoxyuridine. Experientia 31: 502–503

    PubMed  CAS  Google Scholar 

  • Martin JA, Duncan IB, Hall MJ, Wong-Kai-In P, Lambert RW, Thomas GJ (1989) New potent and selective inhibitors of herpes simplex virus thymidine kinase. Nucleosides nucleotides 8: 753–764

    Google Scholar 

  • Martin JL, Ellis MN, Keller PM, Biron KK, Lehrman SN, Barry DW, Furman PA (1985) Plaque autoradiography assay for the detection and quatitation of thymidine kinase-deficient and thymidine kinase altered mutants of herpes simplex virus in clinical isolates. Antimicrob Agents Chemother 28: 181–187

    PubMed  CAS  Google Scholar 

  • Martin SL, Aparisio DI, Bandyopadhyay PK (1989) Genetic and biochemical characterization of the thymidine kinase gene from herpesvirus of turkeys. J Virol 63: 2847–2852

    PubMed  CAS  Google Scholar 

  • Martuza RL, Malick A, Markert JM, Ruffner KL, Coen DM (1991) Experimental therapy of human glioma by means of a genetically engineered virus mutant. Science 252: 854–856

    PubMed  CAS  Google Scholar 

  • May JT, Awad M, Reum A, Sheppard M (1990) Bovine herpes pammilitis virus thymidine kinase. Acta Virol 34: 188–192

    PubMed  CAS  Google Scholar 

  • McDougall JK, Masse TH, Galloway DA (1980) Location and cloning of the herpes simplex virus type 2 thymidine kinase gene. J Virol 33: 1221–1224

    PubMed  CAS  Google Scholar 

  • McGowan JJ, Allen GP, Barnett JM, Gentry GA (1980) Deoxythymidine kinase metabolism in equine herpesvirus type 3 infected horse embryo dermal fibroblasts. Virology 101: 516–519

    PubMed  CAS  Google Scholar 

  • McKnight SL (1980) The nucleotide sequence and transcript map of the herpes simplex virus thymidine kinase gene. Nucleic Acids Res 8: 5949–5964

    PubMed  CAS  Google Scholar 

  • McKnight SL, Gavis ER (1980) Expression of the herpes thymidine kinase gene in Xenopus laevis oocytes: an assay for the study of deletion mutants constructed in vitro. Nucleic Acids Res 8: 5931–5948

    PubMed  CAS  Google Scholar 

  • Mengeling WL (1991) Virus reactivation in pigs latently infected with a thymidine kinase negative vaccine strain of pseudorabies virus. Arch Virol 120: 57–70

    PubMed  CAS  Google Scholar 

  • Miller JM, Whetstone CA, Bello LJ, Lawrence WC (1991) Determination of ability of a thymidine kinase-negative deletion mutant of bovine herpesvirus-1 to cause abortion in cattle. Am J Vet Res 52: 1038–1043

    PubMed  CAS  Google Scholar 

  • Miller RL, Iltis JP, Rapp F (1977) Differential effect of arabinofuranosylthymine on the replication of human herpesviruses. J Virol 23: 679–684

    PubMed  CAS  Google Scholar 

  • Moolten FL, Wells JM (1990) Curability of tumors bearing herpes thymidine kinase genes transferred by retroviral vectors. J Natl Cancer Inst 82: 297–300

    PubMed  CAS  Google Scholar 

  • Munch-Peterson B, Tyrsted G (1988) Thymidine kinase in human leukemia. Expression of the lymphoblastic isoenzyme in three patients with acute myelocytic leukemia. Leuk Res 12: 173–178

    Google Scholar 

  • Munyon W, Kraiselburd E, Davis D, Mann J (1971) Transfer of thymidine kinase to thymidine kinaseless L cells by infection with ultraviolet-irradiated herpes simplex virus. J Virol 7: 813–820

    PubMed  CAS  Google Scholar 

  • Nicolson L, Cullinane AA, Onions DE (1990) The nucleotide sequence of the equine herpesvirus 4 thymidine kinase gene. J Gen Virol 71: 1801–1805

    PubMed  CAS  Google Scholar 

  • Nishiyama Y, Kimura H, Daikoku T (1991) Complementary lethal invasion of the central nervous system by nonneuroinvasive herpes simplex virus types 1 and 2. J Virol 65: 4520–4524

    PubMed  CAS  Google Scholar 

  • Nohara H, Kaplan AS (1963) Induction of a new enzyme in rabbit kidney cells by pseudorabies virus. Biochem Biophys Res Commun 12: 189–193

    CAS  Google Scholar 

  • Nunberg JH, Wright DK, Cole GE, Petrovskis EA, Post LE, Compton T, Gilbert JH (1989) Identification of the thymidine kinase gene of feline herpesvirus: use of degenerate oligonucleotides in the polymerase chain reaction to isolate herpesvirus gene homologs. J Virol 63: 3240–3249

    PubMed  CAS  Google Scholar 

  • Nutter LM, Grill SP, Dutschman GE, Sharma RA, Bobek M, Cheng Y-C (1987) Demonstration of viral thymidine kinase inhibitor and its effect on deoxynucleotide metabolism in cells infected with herpes simplex virus. Antimicrob Agents Chemother 31: 368–374

    PubMed  CAS  Google Scholar 

  • Otsuka H, Kit S (1984) Nucleotide sequence of the marmoset herpesvirus thymidine kinase gene and predicted amino acid sequence of thymidine kinase polypeptide. Virology 135: 316–330

    PubMed  CAS  Google Scholar 

  • Palella TD, Hidaka Y, Silverman LJ, Levine M, Glorioso J, Kelley WN (1989) Expression of human HPRT mRNA in brains of mice infected with a recombinant herpes simplex virus-1 vector. Gene 80: 137–144

    PubMed  CAS  Google Scholar 

  • Parris DS, Harrington JE (1982) Herpes simplex virus variants resistant to high concentrations of acyclovir exist in clinical isolates. Antimicrob Agents Chemother 22: 71–77

    PubMed  CAS  Google Scholar 

  • Pellicer A, Wigler M, Axel R, Silverstein S (1978) The transfer and stable integration of the HSV thymidine kinase gene into mouse cells. Cell 14: 133–141

    PubMed  CAS  Google Scholar 

  • Post LE, Mackern S, Roizman B (1981) Regulation of a genes of herpes simplex virus: expression of chimeric genes produced by fusion of thymidine kinase with a gene promoters. Cell 24: 555–565

    PubMed  CAS  Google Scholar 

  • Price RW, Khan A (1981) Resistance of peripheral autonomic neurons to in vivo productive infection by herpes simplex virus mutants deficient in thymidine kinase activity. Infect Immun 34: 571–580

    PubMed  CAS  Google Scholar 

  • Prieto J, Martin Hernandez AM, Taborés E (1991) Loss of pseudorabies virus thymidine kinase activity due to a single base mutation and amino acid substitution. J Gen Virol 72: 1435–1439

    PubMed  Google Scholar 

  • Reyes GR, Jeang K-T, Hayward GS (1982) Transfection with the isolated herpes simplex virus thymidine kinase genes. I. Minimal size of the active fragments from HSV-1 and HSV-2. J Gen Virol 62: 191–206

    PubMed  CAS  Google Scholar 

  • Roberts GB, Fyfe JA, Gaillard RK, Short SA (1991) Mutant varicella-zoster virus thymidine kinase: correlation of clinical resistance and enzyme impairment. J Virol 65: 6407–6413

    PubMed  CAS  Google Scholar 

  • Roubal J, Klein G (1981) Synthesis of thymidine kinase ( TK) in Epstein-Barr virus-superinfected Raji TK-negative cells. Intervirology 15: 43–48

    PubMed  CAS  Google Scholar 

  • Sakuma S, Yamamoto M, Kumano Y, Mori R (1988) An acyclovir-resistant strain of herpes simplex virus type 2 which is highly virulent for mice. Arch Virol 101: 169–182

    PubMed  CAS  Google Scholar 

  • Sanderson MR, Freemont PS, Murthy HMK, Krane JF, Summers WC, Steitz TA (1988) Purification and crystallization of thymidine kinase from herpes simplex virus type 1. J Mol Biol 202: 917–919

    PubMed  CAS  Google Scholar 

  • Scott SD, Ross NLJ, Binns MM (1989) Nucleotide and predicted amino acid sequences of the Marek’s disease virus and turkey herpesvirus thymidine kinase genes; comparison with thymidine kinase genes of other herpesviruses. J Gen Virol 70: 3055–3065

    PubMed  CAS  Google Scholar 

  • Sears AE, Meignier B, Roizman B (1985) Establishment of latency in mice by herpes simplex virus 1 recombinants that carry insertions affecting regulation of the thymidine kinase gene. J Virol 55: 410–416

    PubMed  CAS  Google Scholar 

  • Shih M-F, Arsenakis M, Tiollais P, Roizman B (1984) Expression of hepatitis B virus S gene by herpes simplex virus type I vectors carrying a and 13 regulated gene chimeras. Proc Natl Acad Sci USA 81: 5867–5870

    PubMed  CAS  Google Scholar 

  • Smiley JR (1980) Construction in vitro and rescue of a thymidine kinase-deficient deletion mutation of herpes simplex virus. Nature 285: 333–335

    PubMed  CAS  Google Scholar 

  • Stanberry LR, Kit S, Myers MG (1985) Thymidine-kinase deficient herpes simplex virus type 2 genital infection in guinea pigs. J Virol 55: 322–328

    PubMed  CAS  Google Scholar 

  • Steiner I, Spivack JG, Deshmane SL, Ace CI, Preston CM, Fraser NW (1990) A herpes simplex virus type 1 mutant containing a nontransinducing Vmw65 protein establishes latent infection in vivo in the absence of viral replication and reactivates efficiently from explanted trigeminal ganglia. J Virol 64: 1630–1638

    PubMed  CAS  Google Scholar 

  • Stevens JG (1989) Human herpesviruses: a consideration of the latent state. Microbiol Rev 53: 318–332

    PubMed  CAS  Google Scholar 

  • Stevens JG, Cook ML (1971) Latent herpes simplex virus in spinal ganglia of mice. Science 173: 843–845

    PubMed  CAS  Google Scholar 

  • Stevens JG, Wagner EK, Devi-Rao GB, Cook ML, Feldman LT (1987) RNA complementary to a herpesvirus alpha gene mRNA is prominent in latently infected neurons. Science 235: 1056–1059

    PubMed  CAS  Google Scholar 

  • Summers WC, Summers WP (1977) [125I]Deoxycytidine used in a rapid, sensitive, and specific assay for herpes simplex virus type 1 thymidine kinase. J Virol 24: 314–318

    PubMed  CAS  Google Scholar 

  • Summers WP, Wagner M, Summers WC (1975) Possible peptide chain termination mutants in thymidine kinase gene of a mammalian virus, herpes simplex virus. Proc Natl Acad Sci USA 72: 4081–4084

    PubMed  CAS  Google Scholar 

  • Swain MA, Galloway DA (1983) Nucleotide sequence of the herpes simplex virus type 2 thymidine kinase gene. J Viral 46: 1045–1050

    CAS  Google Scholar 

  • Tenser RB (1983) Intracerebral inoculation of newborn and adult mice with thymidine kinase-deficient mutants of herpes simplex virus type 1. J Infect Dis 147: 956

    PubMed  CAS  Google Scholar 

  • Tenser R B, Dunstan ME (1979) Herpes simplex virus thymidine kinase expression in infection of the trigeminal ganglion. Virology 99: 417 422

    Google Scholar 

  • Tenser RB, Edris WA (1986) Thymidine kinase (TK) activity in herpes simplex virus type 1 recombinants that carry insertions affecting regulation of the TK gene. Virology 155: 257–261

    PubMed  CAS  Google Scholar 

  • Tenser RB, Edris WA (1987) Trigeminal ganglion infection by thymidine kinase-negative mutants of herpes simplex virus after in vivo complementation. J Virol 61: 2171–2174

    PubMed  CAS  Google Scholar 

  • Tenser RB, Miller RL, Rapp F (1979) Trigeminal ganglion infection by thymidine kinasenegative mutants of herpes simplex virus. Science 205: 915–917

    PubMed  CAS  Google Scholar 

  • Tenser RB, Ressel S, Dunstan ME (1981) Herpes simplex virus thymidine kinase expression in trigeminal ganglion infection: correlation of enzyme activity with ganglion virus titer and evidence of in vivo complementation. Virology 112: 328–341

    PubMed  CAS  Google Scholar 

  • Tenser RB, Dawson M, Ressel SJ, Dunstan ME (1982) Detection of herpes simplex virus mRNA in latently infected trigeminal ganglion neurons by in situ hybridization. Ann Neurol 11: 285–291

    PubMed  CAS  Google Scholar 

  • Tenser RB, Ressel SJ, Fralish FA, Jones JC (1983) The role of pseudorabies virus thymidine kinase expression in trigeminal infection. J Gen Virol 64: 1369–1373

    PubMed  CAS  Google Scholar 

  • Tenser RB, Jones JC, Ressel SJ (1985) Acute and latent infection by thymidine kinase mutants of herpes simplex virus type 2. J Infect Dis 151: 548–550

    PubMed  CAS  Google Scholar 

  • Tenser RB, Hay KA, Edris WA (1989) Latency-associated transcript but not reactivatable virus is present in sensory ganglion neurons after inoculation of thymidine kinase-negative mutants of herpes simplex virus type 1. J Virol 63: 2861–2865

    PubMed  CAS  Google Scholar 

  • Thouless ME, Skinner GRB (1971) Differences in the properties of thymidine kinase produced by cells infected with type 1 and type 2 herpes virus. J Gen Virol 12: 195–197

    PubMed  CAS  Google Scholar 

  • van Oirschot JT, Terpstra C, Moorman RJM, Berns AJM, Gielkens All (1990) Safety of an Aujeszky’s disease vaccine based on deletion mutant strain 783 which does not express thymidine kinase and glycoprotein 1. Vet Rec 127: 443–446

    PubMed  Google Scholar 

  • Veerisetty V, Gentry GA (1983) Alterations in substrate specificity and physiochemical properties of deoxythymidine kinase of a drug-resistant herpes simplex virus type 1 mutant. J Virol 46: 901–908

    PubMed  CAS  Google Scholar 

  • Veerisetty V, Veerisetty IK, Gentry GA (1983) Alterations in the recognition of nucleoside analogues as substrates by the deoxythymidine kinase of a 5-methoxymethyldeoxyuridineresistant mutant of herpes simplex virus type 1 mutant. J Gen Virol 64: 2767–2770

    PubMed  CAS  Google Scholar 

  • Volz DM, Lager LM, Mengeling WL (1992) Latency of a thymidine kinase-negative pseudorabies vaccine virus detected by the polymerase chain reaction. Arch Virol 122: 341–348

    PubMed  CAS  Google Scholar 

  • Wagner MJ, Sharp JA, Summers WC (1981) Nucleotide sequence of the thymidine kinase gene of herpes simplex virus type 1. Proc Natl Acad Sci USA 78: 1441–1445

    PubMed  CAS  Google Scholar 

  • Weinmaster GA, Misra V, McGuire R, Babiuk LA, DeClercq E (1982) Bovid herpesvirus type-1 ( Infectious bovine rhinotracheitis virus)-induced thymidine kinase. Virology 118: 191–201

    PubMed  CAS  Google Scholar 

  • Westheim AI, Tenser RB, Marks JG (1987) Acyclovir resistance in a patient with chronic mucocutaneous herpes simplex infection. J Am Acad Dermatol 17: 875–880

    PubMed  CAS  Google Scholar 

  • Whetstone CA, Miller JM, Seal BS, Bello LJ, Lawrence WC (1992) Latency and reactivation of a thymidine kinase-negative bovine herpesvirus l deletion mutant. Arch Viro 122: 207–214

    CAS  Google Scholar 

  • Whitby AJ, Blyth WA, Hill TJ (1987) The effect of DNA hypomethylating agents on the reactivation of herpes simplex virus from latently infected mouse ganglia in vitro. Arch Virol 97: 137–144

    PubMed  CAS  Google Scholar 

  • Wigler M, Silverstein S, Lee L-S, Pellicer A, Cheng Y-C, Axel R (1977) Transfer of purified herpes virus thymidine kinase gene to cultured mouse cells. Cell 11: 223–232

    PubMed  CAS  Google Scholar 

  • Wilcox CL, Crnic LS, Pizer LI (1992) Replication, latent infection, and reactivation in neuronal culture with a herpes simplex virus thymidine kinase-negative mutant. Virology 187: 348–352

    PubMed  CAS  Google Scholar 

  • Yamada N, Sawaski Y, Nakajima (1980) Thymidine kinase isozymes in rat cerebellum. Correlation of the activities of specific isozymes with DNA synthesis. Brain Res 195: 485–488

    Google Scholar 

  • Yusa T, Yamaguchi Y, Ohwada H, Hayashi Y, Kuroiwa N, Morita T, Asanagi M, Moriyama Y, Fujimura S (1988) Activity of the cytosolic isozyme of thymidine kinase in human primary lung tumors with reference to malignancy. Cancer Res 48: 5001–5006

    PubMed  CAS  Google Scholar 

  • Zimmerman N, Beck-Sickinger AG, Folkens G, Krickl S, Müller I (1991) Conformational and epitope mapping of herpes simplex virus type 1 thymidine kinase using synthetic peptide segments. Eur J Biochem 200: 519–528

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tenser, R.B. (1994). The Role of Herpes Simplex Virus Thymidine Kinase Expression in Pathogenesis and Latency. In: Becker, Y., Darai, G. (eds) Pathogenicity of Human Herpesviruses due to Specific Pathogenicity Genes. Frontiers of Virology, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-85004-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-85004-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-85006-6

  • Online ISBN: 978-3-642-85004-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics