Skip to main content

Abstract

Hypoxanthine guanine phosphoribosyltransferase (E.C.2.4.2.8.; HGPRT) deficiency is associated with a marked clinical heterogeneity [1–3]. All patients with HGPRT deficiency exhibit a common characteristic: increased uric acid production [3]. However, the clinical consequences of this uric acid overproduction may differ markedly from patient to patient. This variability depends not only on the rate of uric acid production but also on the factors that determine urate precipitation, some of which remain to be fully delineated. Among the known factors associated with urate precipitation, effective hypouricemic treatment has dramatically changed the spectrum of the clinical manifestations related to urate deposition in HGPRT deficient patients. In addition, HGPRT deficiency may be associated with a neurological syndrome that in its full expression is characterized by spasticity, hyperreflexia, choreoathetoid movements, mental retardation, and compulsive self-injurious behavior (Fig.1) [4–6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Emmerson BT, Thompson L (1973) The spectrum of hypoxanthine-guanine phosphoribosyltransferase deficiency. Q J Med 42: 423–440

    PubMed  CAS  Google Scholar 

  2. de Bruyn CHMM (1976) Hypoxanthine-guanine phosphoribosyl transferase deficiency. Hum Genet 31: 127–150

    Article  PubMed  Google Scholar 

  3. Stout JT; Caskey CT (1989) Hypoxanthine phosphoribosyltransferase deficiency: the Lesch-Nyhan syndrome and gouty arthritis. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic basis of inherited disease, 6th edn. McGraw-Hill, New York, pp 1007–1028

    Google Scholar 

  4. Lesch M, Nyhan WL (1964) A familial disorder of uric acid metabolism and central nervous system function. Am J Med 36: 561–570

    Article  PubMed  CAS  Google Scholar 

  5. Cristie R, Bay C, Kaufman IA, Bakay B, Borden M, Nyhan WL (1982) Lesch-Nyhan disease: clinical experience with nineteen patients. Develop Med Child Neurol 24: 293–306

    Article  Google Scholar 

  6. Watts RWE, Spellacy E, Gibbs DA, Allsop J, McKeran RO, Slavin GE (1982) Clinical, post-mortem, biochemical and therapeutic observations on the Lesch-Nyhan syndrome with particular reference to the neurological manifestations. Q J Med 51: 43–78

    PubMed  CAS  Google Scholar 

  7. Kelley WN, Greene ML, Rosenbloom FM, Henderson JF, Seegmiller JE (1969) Hypoxanthine-guanine phosphoribosyltransferase deficiency in gout. Ann Intern Med 70: 155–206

    PubMed  CAS  Google Scholar 

  8. Seegmiller JE (1989) Contributions of Lesch-Nyhan syndrome to the understanding of purine metabolism. J Inher Metab Dis 12: 184–196

    Article  PubMed  CAS  Google Scholar 

  9. Nuki G, Lever J, Seegmiller JE (1974) Biochemical characteristics of 8-azaguanine resistant human lymphoblast mutants selected in vitro. Adv Exp Med Biol 41A: 255–267

    Google Scholar 

  10. Seegmiller JE, Rosenbloom FM, Kelley WN (1967) Enzyme defect associated with a sex-linked human neurological disorder and excessive purine synthesis. Science 155: 1682–1684

    Article  PubMed  CAS  Google Scholar 

  11. Sorensen LB (1970) Mechanism of excessive purine biosynthesis in hypoxanthine-guanine phosphoribosyltransferase deficiency. J Clin Invest 49: 968–978

    Article  PubMed  CAS  Google Scholar 

  12. Edwards NL, Recker D, Fox IH (1979) Overproduction of uric acid in hypoxanthine- guanine phosphoribosyltransferase deficiency. Contribution by impaired purine salvage. J Clin Invest 63: 922–930

    Google Scholar 

  13. Puig JG. Jiménez ML, Mateos FA, Fox IH (1989) Adenine nucleotide turnover in hypoxanthine-guanine phosphoribosyl-transferase deficiency: evidence for an increased contribution of purine biosynthesis de novo. Metabolism 38: 410–418

    Article  PubMed  CAS  Google Scholar 

  14. Puig JG, Mateos FA, Jiménez ML, Ramos TH (1988) Renal excretion of hypoxanthine and xanthine in primary gout. Am J Med 85: 533–537

    Article  PubMed  CAS  Google Scholar 

  15. Rosenbloom FM, Henderson JF; Caldwell IC, Kelley WN, Seegmiller JE (1968) Biochemical basis of accelerated purine biosynthesis de novo in human fibroblasts lacking hypoxanthine-guanine phosphoribosyltransferase. J Biol Chem 243: 1166–1173

    PubMed  CAS  Google Scholar 

  16. Itakura M, Sabina RL, Heald PW, Holmes EW (1981) Basis for the control of purine biosynthesis by purine ribosnucleotides. J Clin Invest 67: 994–10002

    Article  PubMed  CAS  Google Scholar 

  17. Zoref-Shani E, Sperling O (1980) Dependence of the metabolic fate of IMP on the rate of total IMP synthesis. Studies in cultured fibroblasts from normal subjects and from purine-overproducing mutant patients. Biochim Biophys Acta 607: 503–511

    Google Scholar 

  18. Vincent MF, van der Berghe G, Hers HG (1986) Effect of fructose on the concentration of phosphoribosyltransferase in isolated hepatocytes. Adv Exp Med Biol 195B: 615–621

    PubMed  Google Scholar 

  19. Nuki G, Astria K, Brenton DP, Cruikshank MK, Lever J, Seegmiller JE (1977) Purine and pyrimidine concentration in cells with decreased hypoxanthine-guanine phosphoribosyltransferase activity. Adv Exp Med Biol 76A: 326–339

    Google Scholar 

  20. Brenton DP, Astria K, Cruikshank MK, Seegmiller JE (1977) Measurement of free nucleotides in cultured human lymphoid cells using high pressure liquid chromatography. Biochem Med 17: 271–274

    Article  Google Scholar 

  21. Lommen EJP, Vogels GD, van der Zee SPM, Trijbels JMF, Schretlen EDAM (1971) Concentrations of purine nucleotides in erythrocytes of patients with the Lesch-Nyhan syndrome before and during oral administration of adenine. Acta Pediat Scand 60: 642–646

    Article  CAS  Google Scholar 

  22. Rivard GE, Izadi P, Lazerson J, McLaren JD, Parker C, Fish CH (1975) Functional and metabolic studies of platelets from patients with Lesch-Nyhan syndrome. Br J Hematol 31: 245–253

    Article  CAS  Google Scholar 

  23. Wood AW, Becker MA, Seegmiller JE (1973) Purine nucleotide synthesis in lymphoblasts cultured from normal subjects and a patient with Lesch-Nyhan syndrome. Biochem Genet 9: 261–274

    Article  PubMed  CAS  Google Scholar 

  24. Holmes EW, Wyngaarden JB, Kelley WN (1973) Human glutamine phosphoribosyl- pyrophosphate amidotransferase: two molecular forms interconvertible by purine ribonucleotides and phosphoribosylpyrophosphate. J Biol Chem 248: 6035–6040

    PubMed  CAS  Google Scholar 

  25. Green ML, Boyle JA, Seegmiller JE (1970) Substrate stabilization: genetically controlled reciprocal relationship of two human enzymes. Science 167: 887–889

    Article  Google Scholar 

  26. Rubin CS, Balis ME, Pionelli S, Berman PH, Dancis J (1969) Elevated AMP pyrophosphorilase activity in congenital IMP pyrophosphorilase deficiency ( Lesch-Nyhan syndrome ). J Lab Clin Med 74: 732–741

    Google Scholar 

  27. Gordon RB, Thompson L, Emmerson BT (1974) Erythrocyte phosphoribosylpyro-phosphate concentrations in heterozygotes for hypoxanthine-guanine phosphoribosyl- transferase deficiency. Metabolism 23: 921–927

    Article  PubMed  CAS  Google Scholar 

  28. Emmerson BT, Gordon RB (1986) HGPRT deficiency with normal erythrocyte PRPP and APRT activity. Adv Exp Med Biol 195A: 163–165

    PubMed  Google Scholar 

  29. Watts RWE, Watts JEM, Seegmiller JE (1965) Xanthine oxidase activity in human tissues and its inhibition by allopurinol. J Lab Clin Med 66: 688–697

    PubMed  CAS  Google Scholar 

  30. Jarasch E-D, Grund C, Bruder G, Heid HW, KeenanTW, Franke WW(1981) Localization of xanthine oxidase in mammary-gland epithelium and capillary endothelium. Cell 25: 67–82

    Google Scholar 

  31. Wilson JM, Young AB, Kelley WN (1983) Hypoxanthine-guanine phosphoribosyltransferase deficiency. The molecular basis of the clinical syndromes. N Eng J Med 309: 900–910

    Google Scholar 

  32. Sass JK, Itabashi HH, Dexter RA (1965) Juvenile gout with brain involvement. Arch Neurol 13: 639–655

    Article  PubMed  CAS  Google Scholar 

  33. Crussi FG, Robertson DM, Hiscox JL (1969) The paradoxical condition of the Lesch-Nyhan syndrome: report of two cases. Am J Dis Child 118: 501–506

    PubMed  CAS  Google Scholar 

  34. Mizuno T, Endoh H, Konishi Y, Miyachi Y, Akaoka I (1976) An autopsy case of the Lesch-Nyhan syndrome: normal HGPRT activity in liver and xanthine calculi in various tissues. Neuropaediatrie 76: 351–355

    Article  Google Scholar 

  35. Allsop J, Watts RWE (1980) Activities of amido phosphoribosyltransferase and purine phosphoribosyltransferase in developing rat brain. Adv Exp Med Biol 122A: 361–366

    Google Scholar 

  36. Rosenbloom FM, Kelley WN, Miller J, Henderson JF, Seegmiller JE (1967) Inherited disorder of purine metabolism: correlation between central nervous system dysfunction and biochemical defects. JAMA 202: 175–177

    Article  PubMed  CAS  Google Scholar 

  37. Lloyd KG, Hornykiewicz O, Davidson L, Shannak K, Farley I, Goldstein M, Shibuya M, Kelley WN, Fox IH (1981) Biochemical evidence of dysfunction of brain neurotransmitters in the Lesch-Nyhan syndrome. N Eng J Med 305: 1106–1011

    Article  CAS  Google Scholar 

  38. Rijksen G, Staal GEJ, van der Vlist MJM (1981) Partial hypoxanthine-guanine phosphoribosyltransferase deficiency with full expression of the Lesch-Nyhan syndrome. Hum Genet 57: 39–47

    Article  PubMed  CAS  Google Scholar 

  39. PageT, Bakay B, Nisinen E, NyhanWL (1981) Hypoxanthine-guanine phosphoribosyltransferase variants: correlation of clinical phenotype with enzyme activity. J Inherit Metab Dis 4: 203–206

    Article  Google Scholar 

  40. Al-Khalidi USA, Chaglassian TH (1965) The species distribution of xanthine oxidase. Biochem J 97: 316–320

    Google Scholar 

  41. Sweetman L (1968) Urinary and cerebrospinal fluid oxypurine levels and allopurinol metabolism in the Lesch-Nyhan syndrome. Fed Proc 27: 1055–1059

    PubMed  CAS  Google Scholar 

  42. Hoefnagel D 81967) Clinical features of the Lesch-Nyhan syndrome: pathology and pathologic physiology. Fred Proc 27: 1042–1046

    Google Scholar 

  43. Jiménez ML, Puig JG, Antón FM, Hernández TR, Castroviejo IP, Vázquez JO (1989) Transporte de purinas a través de la barrera hematoencefálica en la deficiencia de hipoxantina fosforribosiltransferasa. Med Clin (Bare) 92: 167–170

    Google Scholar 

  44. J. G. PUIG and F. A. MATEOS, The Biochemical Basis of HGPRT Deficiency Howard WJ, Kerson LA, Appel SH (1970) Synthesis de novo of purines in slices of rat brain and liver. J Neurochem 17: 121–128

    Google Scholar 

  45. Sidi Y, Mitchell BS (1985) Z-nucleotide accumulation in erythrocytes from Lesch- Nyhan patients. J Clin Invest 76: 2416–2419

    Article  PubMed  CAS  Google Scholar 

  46. Greene I, Urdin IB, Synder SH (1979) Dopamine receptor binding regulated by guanine nucleotides. Mol Pharmacol 16: 69–76

    Google Scholar 

  47. Goldstein M, Anderson LT, Reuben R, Dancis J (1985) Self-mutilation in Lesch- Nyhan disease is caused by dopaminergic denervation [letter]. Lancet 1: 338–339

    Article  PubMed  CAS  Google Scholar 

  48. Ungerstedt U (1971) Postsynaptic supersensitivity after 6-hydroxydopamine induced degeneration of the nigrostriatal dopamine system. Acta Physiol Scand Suppl 361: 69–91

    Google Scholar 

  49. Goldstein M, Kuga S (1984) Dopamine agonist induced compulsive biting behavior in monkeys. Animal model for Lesch-Nyhan syndrome [abstract]. Soc Neurosci 239

    Google Scholar 

  50. Goldstein M, Kuga S (1984) Possible involvement of central dopamine receptors in compulsive self-mutilative behavior [abstract]. Am Neurol Assoc P 39

    Google Scholar 

  51. Goldstein M, Anderson LT, Reuben R, Dancis J (1985) Self-mutilation in Lesch- Nyhan disease is caused by dopaminergic denervation [letter]. Lancet 1: 338

    Article  PubMed  CAS  Google Scholar 

  52. Simmonds HA, Fairbanks LD, Morris GS, Webster DR, Harley EH (1988) Altered erythrocyte nucleotide patterns are characteristic of inherited disorders of purine or pyrimidine metabolism. Clin Chim Acta 171: 197–210

    Article  PubMed  CAS  Google Scholar 

  53. Mateos FA, Puig JG, Jiménez ML, Fox IH (1987) Hereditary xanthinuria. Evidence for enhanced hypoxanthine salvage. J Clin Invest 79: 847–52

    Google Scholar 

  54. Simmonds HA, Webster DR, Wilson J, Potter CF, Fairbanks LD (1984) Evidence of a new syndrome involving hereditary uric acid overproduction, neurological complications and deafness. Adv Exp Med Biol 165A: 97–102

    PubMed  Google Scholar 

  55. Rockson S, Stone R, van der Weyden M, Kelley WN (1974) Lesch-Nyhan syndrome: evidence for abnormal adrenergic function. Science 186: 934–935

    Article  PubMed  CAS  Google Scholar 

  56. Lake CR, Ziegler MG (1977) Lesch-Nyhan syndrome: low dopamine-3-hydroxylase activity and diminished sympathetic response to stress and posture. Science 196: 905–906

    Article  PubMed  CAS  Google Scholar 

  57. Castells S, Chakrabarti C, Winsberg BG, Hurwic M, Perel JM, Nyhan WL (1979) Effects of L-5-hydroxytryptophan on monoamine and amino acids turnover in the Lesch-Nyhan syndrome. J Autism Dev Disord 9: 95–103

    Article  PubMed  CAS  Google Scholar 

  58. Anders TF, Cann HM, Ciaranello RD, Barchas JD, Berger PA (1978) Further observations on the use of 5-hydroxytryptophan in a child with Lesch-Nyhan syndrome. Neuropediatrie 9: 157–166

    Article  CAS  Google Scholar 

  59. Rassin DK, Lloyd KG, Kelley WN, Fox IH (1982) Decreased amino acids in various brain areas of patients with Lesch-Nyhan syndrome. 13: 130–134

    CAS  Google Scholar 

  60. HatanakaT, Higashino H, Woo M, Yasuhara A, Sugimoto T, Kobayashi Y(1990) Lesch- Nyhan syndrome with delayed onset of self-mutilation: hyperactivity of interneurons at the brainstem and blink reflex. Acta Neurol Scand 81: 184–187

    Google Scholar 

  61. Skolnick P, Paul SM, Marangos PJ (1980) purines as endogenous ligands of the benzodiazepine receptor. Fed Proc 39: 3050–3055

    Google Scholar 

  62. Phillis JW (1979) Diazepam potentiation of purinergic depression of central neurons. Can J Physiol Pharmacol 57: 432–435

    Article  PubMed  CAS  Google Scholar 

  63. Daly JW; Burns RF, Snyder SH (1981) Adenosine receptors in the central nervous system: relationship to the central actions of methylxanthines. Life Sci 28: 1083–2097

    Article  Google Scholar 

  64. Mizuno T (1986) Long-term follow-up of ten patients with Lesch-Nyhan syndrome. Neuropediatrics 17: 158–161

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Verlag, Berlin Heidelberg

About this paper

Cite this paper

Puig, J.G., Mateos, F.A. (1993). The Biochemical Basis of HGPRT Deficiency. In: Gresser, U. (eds) Molecular Genetics, Biochemistry and Clinical Aspects of Inherited Disorders of Purine and Pyrimidine Metabolism. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84962-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84962-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84964-0

  • Online ISBN: 978-3-642-84962-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics