Structure of the mammalian centromere

  • John E. Tomkiel
  • William C. Earnshaw
Part of the NATO ASI Series book series (volume 72)

Abstract

The quest to understand the structure and function of the centromere dates back almost a century, when this specialized region of the chromosome was first described in 1894 by Metzner as the site at which chromosomes attached to the spindle apparatus (Metzner, 1894). Even before the genetic consequences of chromosome movement had been demonstrated, it was realized that the centromere was intimately involved in the distribution of nuclear material during cell division.

Keywords

Centromere Protein Alpha Satellite Chromosome Movement Centromeric Chromatin Indian Muntjac 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bernat, R. L., Borisy, G. G., Rothfield, N. F. and Earnshaw, W. C. (1990). Injection of anticentromere antibodies in interphase disrupts events required for chromosome movement in mitosis. J. Cell Biol. 111, 1519–1533.PubMedCrossRefGoogle Scholar
  2. Bernat, R. L., Delannoy, M. R., Rothfield, N. F. and Earnshaw, W. C. (1991). Disruption of centromere assembly during interphase inhibits kinetochore morphogenesis and function in mitosis. Cell. 66, 1229–1238.PubMedCrossRefGoogle Scholar
  3. Bischoff, F. R. and Postingl, H. (1991). Mitotic regulator protei RCC1 is complexed with a nuclear ras-related polypeptide. Proc. Natl. Acad. Sci. USA. 88, 10830 – 10834.PubMedCrossRefGoogle Scholar
  4. Brinkley, B. R. and Stubblefield, E. (1966). The fine structure of the kinetochore of a mammalian cell in vitro. Chromosoma (Berl.). 19, 28–43.CrossRefGoogle Scholar
  5. Brinkley, B. R., Valdivia, M. M., Tousson, A. and Brenner, S. L. (1984). Compound kinetochore of the Indian Muntjac. Chromosoma (Berl.). 91, 1–11.CrossRefGoogle Scholar
  6. Choo, K. H., Vissel, B., Nagy, A., Earle, E. and Kalitis, P. (1991). A survey of the genomic distribution of alpha satellite DNA on all human chromosomes, and a derivation of a new consensus sequence. Nuc. Acids Res. 19, 1179–1182.CrossRefGoogle Scholar
  7. Comings, D. E. and Okada, T. A. (1971). Fine structure of kinetochore in Indian Muntjac. Exp. Cell Res. 67, 97–110.PubMedCrossRefGoogle Scholar
  8. Compton, D. A., Szilak, I. and Cleveland, D. W. (1992). Primary structure of NuMA, an intranuclear protein that defines a novel pathway for segregation of proteins at mitosis. J. Cell Biol. 116, 1395–1408.PubMedCrossRefGoogle Scholar
  9. Compton, D. A., Yen, T. J. and Cleveland, D. W. (1991). Identification of novel centromere/kinetochore associated poroteins using monoclonal antibodies generated against human mitotic chromosome scaffolds. J. Cell Biol. 112, 1083–1097.PubMedCrossRefGoogle Scholar
  10. Cooke, C. A., Bernat, R. L. and Earnshaw, W. C. (1990). CENP-B: a major human centromere protein located beneath the kinetochore. J. Cell Biol. 110, 1475–1488.PubMedCrossRefGoogle Scholar
  11. Drivas, G. T., Shih, A., Coutavas, E., Rush, M. G. and D’Eustachio, P. (1990). Characterization of four novel ras-like genes expressed in a human teratocarcinoma cell line. Mol. Cell Biol. 10, 1793–1798.PubMedGoogle Scholar
  12. Dvorkin, N. and Hamkalo, B. A. (1991). The distribution of alpha satellite sequences in African green monkey chromosomes. J. Cell Biol. 115, 92a.Google Scholar
  13. Earnshaw, W. C. and Bernat, R. L. (1991). Chromosomal passengers: towards an integrated view of mitosis. Chromosoma (Berl.). 100, 139–146.CrossRefGoogle Scholar
  14. Earnshaw, W. C., Machlin, P. S., Bordwell, B., Rothfield, N. F. and Cleveland, D. W. (1987). Analysis of anti-centromere autoantibodies using cloned autoantigen CENP-B. Proc. Nat. Acad. Sci. (USA). 84, 4979–4983.CrossRefGoogle Scholar
  15. Earnshaw, W. C., Ratrie, H. and Stetten, G. (1989). Visualization of centromere proteins CENP-B and CENP-C on a stable dicentric chromosome in cytological spreads. Chromosoma (Berl). 98, 1–12.CrossRefGoogle Scholar
  16. Earnshaw, W. C. and Rothfield, N. F. (1985). Identification of a family of three related centromere proteins using autoimmune sera from patients with scleroderma. Chromosoma (Berl.). 91, 313–321.CrossRefGoogle Scholar
  17. Earnshaw, W. C., Sullivan, K. F., Machlin, P. S., Kaiser, D. A., Pollard, T. D., Rothfield, N. F. and Cleveland, D. W. (1987). Molecular cloning of cDNA for CENP-B, the major human centromere autoantigen. J. Cell Biol. 104, 817–829.PubMedCrossRefGoogle Scholar
  18. Grady, D. L., Ratliff, R. L., Robinson, D. L., McCanlies, E. C., Meyne, J. and Moyzis, R. K. (1992). Highly conserved repetitive DNA sequences are present at human centromeres. Proc. Natl. Acad. Sci. (USA). 89, 1695–1699.CrossRefGoogle Scholar
  19. Haaf, T., Wharburton, P. E. and Willard, H. F. (1992). Integration of human a- satellite DNA into simian chromosomes: Centromere protein binding and disruption of normal chromosome segregation. Cell. 70, 1–20.CrossRefGoogle Scholar
  20. Hoyt, M. A., Totis, L. and Roberts, B. T. (1991). S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function. Cell. 66, 507–517.PubMedCrossRefGoogle Scholar
  21. Jokelainen, P. T. (1967). The ultrastructure and spatial organization of the metaphase kinetochore in mitotic rat cells. J. Ultrastruct. Res. 19, 19–44.PubMedCrossRefGoogle Scholar
  22. Kingwell, B. and Rattner, J. B. (1987). Mammalian kinetochore/centromere composition: A 50 kDa antigen is present in the mammalian kinetochore/centromere. Chromosoma (Berl.). 95, 403–407.CrossRefGoogle Scholar
  23. Li, R. and Murray, A. W. (1991). Feedback control of mitosis in budding yeast. Cell. 66, 519–531.PubMedCrossRefGoogle Scholar
  24. Lorbeer, G. (1934). Die zytologie der lebermoose mit beonderer berucksichtigung allgemeiner Chromosomenfragen. Jahrb. wiss. Bot. 80, 576.Google Scholar
  25. Luykx, P. (1965). The structure of the kinetochore in meiosis and mitosis in Urechis eggs. Exp. Cell Res. 39, 643–657.PubMedCrossRefGoogle Scholar
  26. Lydersen, B. K. and Pettijohn, D. E. (1980). Human specific nuclear protein that associates with the polar region of the mitotic apparatus: distribution in a human/hamster hybrid cell. Cell. 22, 489–499.PubMedCrossRefGoogle Scholar
  27. Masumoto, H., Masukata, H., Muro, Y., Nozaki, N. and Okazaki, T. (1989). A human centromere antigen (CENP-B) interacts with a short specific sequence in alphoid DNA, a human centromeric satellite. J. Cell Biol. 109, 1963–1973.PubMedCrossRefGoogle Scholar
  28. Matsumoto, T. and Beach, D. (1991). Premature initiation of mitosis in yeast lacking RCC1 or an interacting GTPase. Cell. 66, 347–360.PubMedCrossRefGoogle Scholar
  29. Metzner. (1894). Beitrge zur granulalehre. Arch, Anat. u. Physiol. 309–325.Google Scholar
  30. Ohtsubo, M., Kai, R., Furuno, N., Sekiguchi, T., Sekiguchi, M., Hayashida, H., Kuma, K., Miyata, T., Fukushige, S., Murotu, T., Matsubara, K. and Nishimoto, T. (1987). Isolation and characterization ofthe active cDNA of the human cell cycle gene (RCC1) involved in the regulation of onset of chromosome condensation. Genes Develop. 1, 585–593.PubMedCrossRefGoogle Scholar
  31. Ohtsubo, M., Okazaki, H. and Nishimoto, T. (1989). The RCC1 protein, a regulator of the onset of chromosome condensation, locates in the nucleus and binds to DNA. J. Cell Biol. 109, 1389–1397.PubMedCrossRefGoogle Scholar
  32. Palmer, D. K., O’Day, K., Trong, H. L., Charbonneau, H. and Margolis, R. L. (1991). Purification of the centromere-specific protein CENP-A and demonstration that it is a distinctive histone. Proc. Natl. Acad. Sci. USA. 88, 3734–3738.PubMedCrossRefGoogle Scholar
  33. Palmer, D. K., O’Day, K., Wener, M. H., Andrews, B. S. and Margolis, R. L. (1987). A 17 kd centromere protein (CENP-A) copurifies with nucleosome core particles and with histones. J. Cell Biol. 104, 808–815.CrossRefGoogle Scholar
  34. Pankov, R., Lemieux, M. and Hancock, R. (1990). An antigen located in the kinetochore region in metaphase and on polar microtubule ends in the midbody region in anaphase, characterized using a monoclonal antibody. Chromosoma (Berl.). 99, 95–101.CrossRefGoogle Scholar
  35. Pepper, D. A. and Brinkley, B. R. (1980). Tubulin nucleation and asembly in mitotic cells: Evidence for nucleic acid in kinetochores and centrosomes. Cell Motility. 1, 1–15.PubMedCrossRefGoogle Scholar
  36. Pfarr, C. M., Coue, M., Grisson, P. M., Hays, T. S., Porter, M. E. and Mcintosh, J. R. (1990). Cytoplasmic dynein is localized to kinetochores during mitosis. Nature. 345, 263–265.PubMedCrossRefGoogle Scholar
  37. Pluta, A., Cooke, C. A. and Earnshaw, W. C. (1990). Structure of the human centromere at metaphase. TIBS. 15, 181–185.PubMedGoogle Scholar
  38. Pluta, A., Saitoh, N., Goldberg, I. and Earnshaw, W. C. (1992). Identification of a subdomain of CENP-B that is necessary and sufficient for targeting to the human centromere. J. Cell Biol. 116, 1081–1093.PubMedCrossRefGoogle Scholar
  39. Rattner, J. B. (1986). Organization within the mammalian kinetochore. Chromosoma (Berl.). 93, 515–520.CrossRefGoogle Scholar
  40. Rattner, J. B. (1987). The organization of the mammalian kinetochore: a scanning electron microscope study. Chromosoma (Berl.). 95, 175–181.CrossRefGoogle Scholar
  41. Rattner, J. B. (1991). The structure of the mammalian centromere. Bioessays. 13, 51–56.PubMedCrossRefGoogle Scholar
  42. Rattner, J. B. and Bazett-Jones, D. P. (1989). Kinetochore structure: Electron spectroscopic imaging of the kinetochore. J. Cell Biol. 108, 1209–1219.PubMedCrossRefGoogle Scholar
  43. Reider, C. L. (1982). The formation, structure and composition of the mammalian kinetochore and kinetochore fiber. Int. Rev. Cytol. 79, 1–58.CrossRefGoogle Scholar
  44. Reider, C. L. (1990). Formation of the astral mitotic spindle: Ultrastructural basis for the centrosome-kinetochore interaction. Electron Micros. Rev. 3, 269–300.CrossRefGoogle Scholar
  45. Rieder, C. L. and Alexander, S. P. (1989). The attachment of chromosomes to the mitotic spindle and the production of aneuploidy in newt lung cells. In Mechanisms of Chromosome Distribution and Aneuploidy (ed. M. A. Resnick and B. K. Vig), 185–194. New York: Alan R. Liss.Google Scholar
  46. Ris, H. and Witt, P. L. (1981). Structure of the mammalian kinetochore. Chromosoma (Berl.). 82, 153–170.CrossRefGoogle Scholar
  47. Saitoh, H., Tomkiel, J., Cooke, C. A., Ratrie, H., Maurer, M., Rothfield, N. F. and Earnshaw, W. C. (1992). CENP-C, an autoantigen in scleroderma, is a component of the human inner kinetochore plate. Cell. 70, 115–125.PubMedCrossRefGoogle Scholar
  48. Sawin, K. E., Mitchison, T. J. and Worderman, L. G. (1992). Evidence for kinesin-related proteins in the mitotic apparatus using peptide antibodies. J. Cell Sci. 101, 303–313.PubMedGoogle Scholar
  49. Schrader, F. (1936). The kinetochore or spindle fiber locus in Amphiuma tridactylum. Biol. Bull. 70, 484–498.CrossRefGoogle Scholar
  50. Seino, H., Hisamoto, N., Uzawa, S., Sekiguchi, T. and Nishimoto, T. (1992). DNA-binding domain of RCC1 protein is not esssential for coupling mitosis with DNA replication. J. Cell Sci. 102, 393–400.PubMedGoogle Scholar
  51. Sharp, L. W. (1929). Structure of large somatic chromosomes. Bot. Gaz. 88, 349.CrossRefGoogle Scholar
  52. Simerly, C., Balczon, R., Brinkley, B. R. and Schatten, G. (1990). Microinjected kinetochore antibodies interfere with chromosome movement in meiotic and mitotic mouse embryos. J. Cell Biol. 111, 1491–1504.PubMedCrossRefGoogle Scholar
  53. Simpson, R. T. (1990). Nucleosome positioning: Occurance, mechanisms, and functional consequences. Prog. in Nucleic Acid. Res. and Mol. Biol. 40, 143–184.CrossRefGoogle Scholar
  54. Spencer, F. and Hieter, P. (1992). Centromere DNA mutations induce a mitotic delay in S. cerevisiae. Proc. Natl. Acad. Sci. USA. 89, 8908–8912.PubMedCrossRefGoogle Scholar
  55. Steuer, E. R., Wordeman, L., Schoer, T. A. and Sheetz, M. P. (1990). Localization of cytoplasmic dynein to mitotic spindles and kinetochores. Nature. 345, 266–268.PubMedCrossRefGoogle Scholar
  56. Sullivan, K. F. and Glass, C. A. (1991). CENP-B is a highly conserved mammalian centromere protein with homology to the helix-loop-helix family of proteins. Chromosoma. 100, 360–370.PubMedCrossRefGoogle Scholar
  57. Willard, H. F. and Waye, J. S. (1987). Hierarchical order in chromosome-specific human alpha satellite DNA. Trends in Genet. 3, 192–198.CrossRefGoogle Scholar
  58. Witt, P. L., Ris, H. and Borisy, G. G. (1980). Origin of kinetochore microtubules in Chinese hamster cells. Chromosoma. 81, 483–505.PubMedCrossRefGoogle Scholar
  59. Wordeman, L., Steurer, E., Sheetz, M. and Mitchison, T. (1991). Chemical subdomains within the kinetochore of isolated CHO mitotic chromosomes. J. Cell Biol. 114, 285–294.PubMedCrossRefGoogle Scholar
  60. Yen, T. J., Compton, D. A., Earnshaw, W. C. and Cleveland, D. W. (1991). CENP-E, a human centromere associated protein released from chromosomes at the onset of anaphase. EMBO J. 10, 1245–1991.PubMedGoogle Scholar
  61. Yen, T. J., Li, G., Schaar, B., Szilak, I. and Cleveland, D. W. (1992). CENP-E is a putative kinetochore motor that acumulates just prior to mitosis. Nature. 359, 536–539.PubMedCrossRefGoogle Scholar
  62. Zinkowski, R. P., Meyne, J. and Brinkley, B. R. (1991). The centromere-kinetochore complex: a repeat subunit model. J. Cell Biol. 113,Google Scholar
  63. Zirkle, R. E. (1970). UV-microbeam irradiation of newt-cell cytoplasm: Spindle destruction, false anaphase, and delay of true anaphase. Rad. Res. 41, 516–537.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • John E. Tomkiel
    • 1
  • William C. Earnshaw
    • 1
  1. 1.Department of Cell Biology and AnatomyJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations