Skip to main content

Microtubule Converging Centers — Implications for Microtubule Dynamics in Higher Plants

  • Conference paper

Part of the book series: NATO ASI Series ((ASIH,volume 72))

Abstract

The reorganization of the microtubular cytoskeleton was studied during telophase-interphase transition and interphase in Haemanthus endosperm cells, and in cell fragments (cytoplasts). This report concerns the role of microtubule (MT) converging centers (MTCCs) in the reorganization of the higher plant cytoskeleton. Microtubules (MTs) were visualized with the immunogold and immunogold-silver enhanced methods. Cells were fixed at room temperature (21°–24° C) and after high (35°–37° C) and low (4°–7° C) temperature shocks. The temperature shocks modify behavior of MTCCs. During early prophase and telophase-interphase transition, the formation of MTCCs is greatly enhanced at elevated temperature. These are stages when a pronounced reorganization of the cytoskeleton takes place. MTCCs are polar structures with remarkably different dynamics and properties at the diverging and converging ends. The indirect evidence shows that the converging tip of MTCC is (-) and the diverging end is (+). Our data imply that the reorganization of the higher plant cytoskeleton is basically a competitive sorting of MTs intrinsic polarity, with MTCCs as principal structural components.

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Moscow State University, Biology Faculty, Department of Cytology and Histology, 119899 Moscow, Russia.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
EUR   29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR   85.59
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR   105.49
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baas PW and Ahmad FJ (1992) The plus ends of stable microtubules are the exclusive nucleating structures for microtubule in the axon. J. Cell Biol. 116:1231–1241

    Article  PubMed  CAS  Google Scholar 

  • Bajer A (1965) Cine micrographic analysis of cell plate formation in endosperm. Exptl. Cell Res. 37:376–398

    Article  PubMed  CAS  Google Scholar 

  • Bajer A (1968) Fine structure studies on phragmoplast and cell plate formation. Chromosoma 24:383–417

    Article  Google Scholar 

  • Bajer AS and Molè-Bajer J (1986) Reorganization of microtubules in endosperm cells and cell fragments of the higher plant Haemanthus in vivo. J. Cell Biol. 102:263–281

    Article  PubMed  CAS  Google Scholar 

  • Bornens M (1992) Structure and function of isolated centrosomes. In The Centrosome (ed. VI Kalnins) pp. 1–43. Acad Press San Diego

    Google Scholar 

  • Brinkley BR (1985) Microtubule organizing centers. Ann. Rev. Cell Biol. 1:145–172

    Article  PubMed  CAS  Google Scholar 

  • Cassimeris L Inoué S and Salmon ED (1988) Microtubule dynamics in the chromosomal spindle fiber: analysis by fluorescence and high-resolution polarization microscopy. Cell Mot. Cytoskel. 10:185–196

    Article  CAS  Google Scholar 

  • Euteneuer U and Mcintosh JR (1980) Polarity of midbody and phragmoplast microtubules. J. Cell Biol. 87:509–515

    Article  PubMed  CAS  Google Scholar 

  • Euteneuer U Jackson W T and Mcintosh JR (1982) Polarity of spindle microtubules in Haemanthus endosperm. J. Cell Biol. 94, 644–653

    Article  PubMed  CAS  Google Scholar 

  • Farell KW Jordan MA Miller HP and Wilson L (1987) Phase dynamics at MT ends: the coexistence of dynamic instability and treadmilling. J. Cell Biol. 104:1035–1046

    Article  Google Scholar 

  • Gelfand V I and Bershadsky AD (1991) Microtubule dynamics: mechanism, regulation, and function. Annu. Rev. Cell Biol. 7:93–116

    Article  PubMed  CAS  Google Scholar 

  • Gunning BES and Hardham AR (1982) Microtubules. Ann. Rev. Plant Physiol. 33:651–698

    Article  CAS  Google Scholar 

  • Harris PJ Clason EL and Prier KR (1989) Tubulin polymerization in unfertilized sea-urchin eggs induced by elevated temperature. J. Cell. Sci. 93:9–17

    PubMed  CAS  Google Scholar 

  • Harris PJ and Clason EL (1992) Conditions for assembly of tubulin-based structures in unfertilized sea urchin eggs. Spirals, monasters and cytasters. J. Cell Sci. 102:557–567

    PubMed  Google Scholar 

  • Hepler PK and Jackson WT (1967) Microtubules and early stages of cell-plate formation in the endosperm of Haemanthus katerinae Baker. J. Cell Biol. 38:437–446

    Article  Google Scholar 

  • Kallajoki M Weber K and Osborn M (1992) Ability to organize microtubules in taxol treated mitotic PtK2 cells goes with the SPN antigen and not with centrosome. J. Cell Sci. 102:91–102

    PubMed  CAS  Google Scholar 

  • Maekawa T Leslie R and Kuriyama R (1991) Identification of a minus end-specific microtubule-associated protein located at the mitotic poles in cultured mammalian cells. Eur. J. Cell Biol. 94:255–267

    Google Scholar 

  • McDonald HB Stewart RJ and Goldstein LSB (1990) The kinesin-like ncd protein of Drosophila is a minus end-directed microtubule motor. Cell 63:1159–1165

    Article  PubMed  CAS  Google Scholar 

  • McNiven MA Wang M and Porter KR (1984) Microtubule polarity and the direction of pigment transport reverse simultaneously in surgically severed melanophore arms. Cell. 37:753–765

    Article  PubMed  CAS  Google Scholar 

  • McNiven MA and Portēr KR (1988) Organization of microtubules in centrosome free cytoplasm. J. Cell Biol 106:1593–1605

    Article  PubMed  CAS  Google Scholar 

  • Mineyuki Y Yamashita M and Nagahama Y (1991) p34cdc2 kinase homologue in the preprophase band. Protoplasma 162:182–186

    Article  CAS  Google Scholar 

  • Mitchison TJ (1992) Self-organization of polymer-motor systems in the cytoskeleton. Phil. Trans. R. Soc. Lond. B. 336:99–106

    Article  CAS  Google Scholar 

  • Molè-Bajer J and Bajer AS (1983) The action of taxol on mitosis. Modification of microtubule arrangements of the mitotic spindle. J. Cell Biol. 96:527–540

    Article  PubMed  Google Scholar 

  • Molè-Bajer J and Bajer AS (1988) Relation of F-actin organization to microtubules in drug treated Haemanthus mitosis. Protoplasma Suppl. 1:99–112

    Google Scholar 

  • Morejohn LC and Fosket DE (1991) The biochemistry of compounds with anti-microtubule activity in plant cells. Pharmac. Theor. 51:217–231.

    Article  CAS  Google Scholar 

  • Rieder CL and Bajer AS (1977) Heat-induced reversible hexagonal packing of spindle microtubule. J. Cell Biol. 74:717–725

    Article  PubMed  CAS  Google Scholar 

  • Sinnott HB and Bloch R (1941) Division in vacuolate plant cells. Am. J. Bot. 28:225–232

    Article  Google Scholar 

  • Smirnova EA and Bajer AS (1992a) Spindle poles in higher plant mitosis. Cell Mot. Cytosk. 23:1–7

    Article  CAS  Google Scholar 

  • Smirnova EA and Bajer AS (1992b) Microtubule converging centers and reorganization of the mitotic spindle in higher plant Haemanthus. (Submitted).

    Google Scholar 

  • Schulze E and Kirschner M (1986) Microtubule dynamics in interphase cells. J.Cell Biol. 102:1020–1031.

    Article  PubMed  CAS  Google Scholar 

  • Vantard M Levilliers N Hill A-M Adoutte A and Lambert A-M (1990) Incorporation of Paramecium axonemal tubulin into higher plant cells reveals functional sites of microtubule assembly. Proc. Natl. Acad. Sci. USA. 87:8825–8829.

    Article  PubMed  CAS  Google Scholar 

  • Verde F Labbe J-C Dorre M and Karsenti E (1990) Regulation of microtubule dynamics by cdc2 protein kinase in cell-free extracts of Xenopus eggs. Nature 343:233–238.

    Article  PubMed  CAS  Google Scholar 

  • Verde F Berrez J-M Antony C and Karsenti E (1991) Taxol induced microtubule asters in mitotic extracts of Xenopus eggs: requirement for phosphorylated factors and cytoplasmic dynein. J. Cell Biol. 112:1177–1187.

    Article  PubMed  CAS  Google Scholar 

  • Verde F Dogterom M Stelzer E Karsenti E and Leibler S (1992) Control of microtubule dynamics and length by cyclin A- and cyclin B-dependent kinases in Xenopus extracts. J. Cell Biol. 118:10974109.

    Google Scholar 

  • Vorobjev IA and Nadezhdina ES (1987) The centrosome and its role in the organization of microtubules. Int. Rev. Cytol. 106:227–293

    Article  PubMed  CAS  Google Scholar 

  • Wadsworth P and Salmon ED (1986) Microtubule dynamics of mitotic spindles of living cells. Ann. N. Y. Acad. Sci. 466:580–592

    Article  PubMed  CAS  Google Scholar 

  • Wick SM and Duniec J (1984) Immunofluorescence microscopy of tubulin and microtubule arrays in plant cells. II. Transition between pre-prophase band and the mitotic spindle. Protoplasma 122:45–55

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bajer, A.S., Smirnova, E.A., Molè-Bajer, J. (1993). Microtubule Converging Centers — Implications for Microtubule Dynamics in Higher Plants. In: Vig, B.K. (eds) Chromosome Segregation and Aneuploidy. NATO ASI Series, vol 72. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84938-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84938-1_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84940-4

  • Online ISBN: 978-3-642-84938-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics