Skip to main content

Mutations Affecting Translational Accuracy in Yeast

  • Conference paper
Protein Synthesis and Targeting in Yeast

Part of the book series: NATO ASI Series ((ASIH,volume 71))

Abstract

To investigate the mechanisms used in eukaryotes to maintain translational accuracy, we and others have isolated and characterized mutations that affect the fidelity of protein synthesis in yeast. These mutations include nonsense suppressors that cause misreading of specific stop codons; omnipotent suppressors, which cause general translational inaccuracy and suppression of UAG, UAA, and UGA codons; and allosuppressors and antisuppressors, which respectively enhance or lower the efficiency of certain suppressors. Using this layered approach we should identify translational components that are likely to interact. Recently the genetic work has been extended by cloning and characterizing the mutant genes. We have also identified components of the translational apparatus important for fidelity by selecting for wild-type genes that alter accuracy when present at higher copy number. Below we summarize our work in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • All-Robyn JA, Brown N, Otaka E and Liebman SW (1990a) Sequence and functional similarity between a yeast ribosomal protein and the Escherichia coli S5 ram protein. Mol. Cell. Biol. 10: 6544–6553

    PubMed  CAS  Google Scholar 

  • AU-Robyn JA, Kelley-Geraghty DK, Griffin E, Brown N and Liebman SW (1990b) Isolation of omnipotent suppressors in an [eta+] yeast strain. Genetics 124: 505–514

    Google Scholar 

  • Conrad RC and Craven GR (1987) A cyanogen bromide fragment of S4 that specifically rebinds 16S RNA. Nucleic Acids Res. 15: 10331–10343

    Article  PubMed  CAS  Google Scholar 

  • Cox BS, Tuite MF and McLaughlin CS (1988) The [psi] factor of yeast: A problem in inheritance. Yeast 4: 159–178

    Article  PubMed  CAS  Google Scholar 

  • Eng FJ, and Warner JR (1991) Structural basis for the regulation of splicing of a yeast messenger RNA. Cell 65: 797–804

    Article  PubMed  CAS  Google Scholar 

  • Fragapane P, Caffarelli E, Lener M, Prislei S, Santoro B and Bozzoni I (1992) Identification of the sequences responsible for the splicing phenotype of the regulatory intron of the L1 ribosomal protein gene of Xenopus laevis. Mol. Cell. Biol. 12: 1117–1125

    PubMed  CAS  Google Scholar 

  • Henkin TM, Chambliss GH and Grundy FJ (1990) Bacillus subtilis mutants with alterations in ribosomal protein S4. J. Bact. 172: 6380–6385

    PubMed  CAS  Google Scholar 

  • Higo K and Otaka E (1979) Isolation and characterization of fourteen ribosomal proteins from the small subunits of yeast. Biochem. 18: 4191–4196

    Article  CAS  Google Scholar 

  • Hinnebusch AG and Liebman SW (1991) Protein synthesis and translational control in Saccharomyces cerevisiae, pp. 627–735 in The molecular and cellular biology of the yeast Saccharomyces: genome dynamics, protein synthesis, and energetics, vol. I, (eds) Broach JR, Pringle JR and Jones EW. Cold Spring Harbor Laroratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Ishiguro J, Ono B, Masurekar M, Mclaughlin CS and Sherman F (1981) Altered ribosomal protein S11 from the SUP46 suppressor in yeast. J. Mol. Biol. 147: 391–397

    Article  PubMed  CAS  Google Scholar 

  • Kushnirov VV, Ter-avanesyan M, Telckov MV, Surguchov AP, Smirnov VN and Inge-vechtomov SG (1988) Nucleotide sequence of the sup2 (sup35) gene of Saccharomyces cerevisiae. Gene 66: 45–54

    Article  PubMed  CAS  Google Scholar 

  • Liebman SW and All-Robyn JA (1984) A new non-Mendelian element, [eta+], causes lethality of yeast omnipotent-suppressor strains. Current Genetics 8: 567–573

    Article  CAS  Google Scholar 

  • Liebman SW and Cavenagh M (1980) An antisuppressor which acts on omnipotent suppressors in yeast. Genetics 95: 49–61

    PubMed  CAS  Google Scholar 

  • Liebman SW and Cavenagh MM (1981) 40S ribosomal protein from a S. cerevisiae antisuppressor mutant exhibiting a unique 2D gel pattern. Current Genetics 3: 27–29

    CAS  Google Scholar 

  • Liebman SW, Cavenagh MM and Bennett LN (1980) Isolation and properties of an antisuppressor in S. cerevisiae specific for an omnipotent suppressor. J.Bact. 143: 1527–1529

    PubMed  CAS  Google Scholar 

  • Link AJ and Olson MV (1991) Physical map of the Saccharomyces cerevisiae genome at 110-kb resolution. Genetics 127: 681–698.

    PubMed  CAS  Google Scholar 

  • Mizuta K, Hashimoto T, Suzuki K and Otaka E (1991) Yeast ribosomal proteins: XII. YS11 of Saccharomyces cerevisiae is a homologue of E. coli S4 according to the gene analysis. Nucleic Acids Res. 19: 2603–2608

    CAS  Google Scholar 

  • Mortimer RK, Schild D, Contopoulou R and Kans JA (1989) Genetic map of Saccharomyces cerevisiae, edition 10. Yeast 5: 321–403

    Article  PubMed  CAS  Google Scholar 

  • Nomura M, Gourse R and Baughman G (1984) Regulation of the synthesis of ribosomes and ribosomal components. Annu. Rev. Biochem. 53: 75–117

    Article  PubMed  CAS  Google Scholar 

  • Ono B, Stewart JW and Sherman F (1981) Serine insertion caused by the ribosomal suppressor SUP46 in yeast. J. Mol. Biol. 147: 373–379

    Article  PubMed  CAS  Google Scholar 

  • Ono B, Moriga N, Ishihara K, Ishiguro J, Ishino Y and Shinoda S (1984) Omnipotent suppressors effective in [psi+] strains of Saccharomyces cerevisiae recessiveness and dominance. Genetics 107: 219–230

    PubMed  CAS  Google Scholar 

  • Otaka E, Higo K and Osawa S (1982) Isolation of seventeen proteins and aminoterminal amino acid sequences of eight proteins from cytoplasmic ribosomes of yeast. Biochemistry 21: 4545–4550

    Article  PubMed  CAS  Google Scholar 

  • Piepersberg W, Geyl D, Hummel H and Bock A (1980) Physiology and biochemistry of bacterial ribosomal mutants, pp. 359–377 in Genetics and evolution of RNA polymerases, tRNA and ribosomes, (eds) Osawa S, Ozeki H, Uchida H, and Yura T. Tokyo University Press, Tokyo.

    Google Scholar 

  • Song JM (1987) Genetic and molecular studies of genes that affect translational fidelity in Saccharomyces cerevisiae. PhD Thesis, Univ. of Illinois.

    Google Scholar 

  • Song JM and Liebman SW (1985) Interaction of UAG-suppressors and omnipotent suppressors in Saccharomyces cerevisiae. J. Bact. 161: 778–780

    PubMed  CAS  Google Scholar 

  • Song JM and Liebman SW (1987) Allosuppressors that enhance the efficiency of omnipotent suppressors in Saccharomyces cerevisiae. Genetics 115: 451–460

    PubMed  CAS  Google Scholar 

  • Song JM, Picologlou S, Grant CM, Firoozan M, Tuite MF and Liebman SW (1989) Elongation factor EF-1α gene dosage alters translational fidelity in Saccharomyces cerevisiae. Mol. Cell. Biol. 9: 4571–4575

    PubMed  CAS  Google Scholar 

  • Suzuki K, Oliver J, and Wool IG (1991) The primary structure of rat ribosomal protein S2. J. Biol. Chem. 266: 2007–20010

    Google Scholar 

  • Vincent A and Liebman SW The yeast omnipotent suppressor SUP46 encodes a ribosomal protein which is a functional and structural homolog of the E. coli S4 ram protein. Genetics in press

    Google Scholar 

  • Wakem LP and Sherman F (1990) Isolation of omnipotent suppressors in the yeast Saccharomyces cerevisiae. Genetics 124: 515–522

    PubMed  CAS  Google Scholar 

  • Warner JR (1989) Synthesis of ribosomes in Saccharomyces cerevisiae. Microbiol. Rev. 53: 256–271

    PubMed  CAS  Google Scholar 

  • Wilson PG and Culbertson MR (1988) SUF12 suppressor protein of yeast: a fusion protein related to the EF-1 family of elongation factors. J. Mol. Biol. 199: 559–573

    Article  PubMed  CAS  Google Scholar 

  • Wool IG, Endo Y, Chan YL and Gluck A (1990) Structure, function, and evolution of mammalian ribosomes, pp. 203–214 in The ribosome: structure, function, and evolution, (eds) Hill WE, Dahlberg A, Garrett RA, Moore PB, Schlessinger D, and Warner JR. American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Woolford JL and Warner JR (1991) The ribosome and its synthesis, pp. 587–626 in The molecular and cellular biology of the yeast Saccharomyces: genome dynamics, protein synthesis, and energetics, vol. I, (eds) Broach JR, Pringle JR, and Jones EW. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liebman, S.W., Vincent, A., Song, J.M., All-Robyn, J. (1993). Mutations Affecting Translational Accuracy in Yeast. In: Brown, A.J.P., Tuite, M.F., McCarthy, J.E.G. (eds) Protein Synthesis and Targeting in Yeast. NATO ASI Series, vol 71. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84921-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84921-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84923-7

  • Online ISBN: 978-3-642-84921-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics