Skip to main content

mRNA Translation and Protein Folding in vivo

  • Conference paper
  • 119 Accesses

Part of the book series: NATO ASI Series ((ASIH,volume 71))

Abstract

Most current models that describe how polypeptide chains adopt their native three-dimensional structure are based largely upon studies on the refolding of purified denatured proteins in vitro (9,10,13,18). Although these models have provided important insights into protein folding pathways, they have focussed attention primarily upon the spatial organisation of amino acids within the polypeptide chain. It has now become clear that additional factors promote protein folding inside the cell. These include the chaperonins, protein disulphide isomerases and peptidyl prolyl cis-trans isomerases (13-15). In addition, the temporal separation of amino acids during the synthesis of the nascent polypeptide chain might be significant for protein folding in vivo (4, 16, 25).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, A.K. & Pihl, A. (1980). Eur. J. Biochem. 106, 257–262.

    Article  PubMed  CAS  Google Scholar 

  2. Aebi, M., Furter, R., Prantl, F., Niederberger, P. & Hutter, R. (1984) Curr. Genet 8, 173–180.

    Article  CAS  Google Scholar 

  3. Bairn, S.B., Pietras, D.F., Eustice, D.C & Sherman, F. (1985). Molec. Cell Biol 5, 1839–1846.

    Google Scholar 

  4. Baldwin, R.L. (1975). Annu. Rev. Biochem. 44, 453–475.

    Article  PubMed  CAS  Google Scholar 

  5. Bergman, L.W. & Kuehl, W.M. (1979a). J. Biol. Chem. 254, 5690–5694.

    PubMed  CAS  Google Scholar 

  6. Bergman, L.W. & Kuehl, W.M. (1979b). J. Biol Chem. 254, 8869–8876.

    PubMed  CAS  Google Scholar 

  7. Candelas, G., Candelas, T., Ortiz, A. & Rodriguez, O. (1983). Biochem. Biophys. Res. Commun. 116, 1033–1038.

    Article  PubMed  CAS  Google Scholar 

  8. Chaney, W.G. & Morris, A.J. (1979). Arch. Biochem. Biophys. 194, 283–291.

    Article  PubMed  CAS  Google Scholar 

  9. Christensen, H. & Pain, R.H. (1991). Eur. Biophys. J. 19, 221–229.

    Article  PubMed  CAS  Google Scholar 

  10. Creighton, T.E. (1990). Biochem. J. 270, 1–16.

    PubMed  CAS  Google Scholar 

  11. Crombie, T., Swaffield, J.C. & Brown, A.J.P. (1992) J. Mol. Biol., 228, 7–12.

    Article  PubMed  CAS  Google Scholar 

  12. Duncan, K., Edwards, R.M. & Coggins, J.R. (1987) Biochem. J. 246, 375–386.

    PubMed  CAS  Google Scholar 

  13. Fischer, G. & Schmid, F.X. (1990). Biochemistry 29, 2205–2212.

    Article  PubMed  CAS  Google Scholar 

  14. Freedman, R.B. (1989). Cell 57, 1069–1072.

    Article  PubMed  CAS  Google Scholar 

  15. Gething, M.-J. & Sambrook, J. (1992). Nature355, 33–45.

    Google Scholar 

  16. Goldberg, M.E. (1985). Trends Biochem. Sci. 10, 388–391.

    Article  CAS  Google Scholar 

  17. Karplus, M. & Weaver, D.L. (1976). Nature 260, 404–406.

    Article  PubMed  CAS  Google Scholar 

  18. Kim, P.S. & Baldwin, R.L. (1990). Ann. Rev. Biochem. 59, 631–660.

    Article  PubMed  CAS  Google Scholar 

  19. Lizardi, P.M., Mahdavi, V., Shields, D. & Candelas, G. (1979). Proc. Natl Acad. Sci. USA76, 6211–6215.

    Google Scholar 

  20. McNally, T., Purvis, I.J., Fothergill-Gilmore, L. & Brown, A.J.P. (1989). FEBS Letters 247, 312–316.

    Article  PubMed  CAS  Google Scholar 

  21. Moore, P.A., Sagliocco, F.A., Wood, R.M.C. & Brown, A.J.P. (1991). Molec. Cell Biol 11, 5330–5337.

    PubMed  CAS  Google Scholar 

  22. Morion, J., Lloubes, R., Varenne, S., Chartier, M. & Lazdunski, C. (1983). J. Mol. Biol. 170, 271–285.

    Article  Google Scholar 

  23. Peters, T. & Davidson L.K. (1982). J. Biol. Chem. 257, 8847–8853.

    PubMed  CAS  Google Scholar 

  24. Petersen, N.S. & McLaughlin, C.S. (1973). J. Mol. Biol 81, 33–45.

    Article  PubMed  CAS  Google Scholar 

  25. Phillips, D.C. (1966). Scientific American 215 (November), 78–90.

    Article  PubMed  CAS  Google Scholar 

  26. Protzel, A. & Morris, A.J. (1974). J. Biol. Chem. 249, 4594–4600.

    PubMed  CAS  Google Scholar 

  27. Purvis, I.J., Bettany, A.J.E., Santiago, T.C., Coggins, J.R., Duncan, K., Eason, R. & Brown, A.J.P. (1987)., 413–417.

    Google Scholar 

  28. Randall, L.L., Josefsson, L.-G. & Hardy, S.J.S. (1980). Eur. J. Biochem. 107, 375–379.

    Article  PubMed  CAS  Google Scholar 

  29. Santiago, T.C., Purvis, I.J., Bettany, A.J.E. & Brown, A.J.P. (1986). Nucleic Acids Res. 14, 8347–8360.

    Article  PubMed  CAS  Google Scholar 

  30. Schweizer, M., Roberts, L.M., Holte, H.-J., Takabayashi, K., Hollerer, E., Hoffman, B., Muller, G., Kottig, H. & Schweizer, E. (1986) Molec. Gen. Genet. 203, 479–486.

    Article  PubMed  CAS  Google Scholar 

  31. Varenne, S., Knibiehler, M., Cavard, D., Morion, J. & Lazdunski, C. (1982). J. Mol. Biol. 159, 57–70.

    Article  PubMed  CAS  Google Scholar 

  32. Yanofsky, C (1981). Nature 289, 751–758.

    Article  PubMed  CAS  Google Scholar 

  33. Zalkin, H., Paluh, J.L., van Cleemput, M., Moye, W.S. & Yanofsky, C. (1984). J. Biol. Chem. 259, 3985–3992.

    PubMed  CAS  Google Scholar 

  34. Zucker, M. & Steigler, P. (1981). Nucleic Acids Res. 9, 133–148.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brown, A.J.P., Crombie, T. (1993). mRNA Translation and Protein Folding in vivo . In: Brown, A.J.P., Tuite, M.F., McCarthy, J.E.G. (eds) Protein Synthesis and Targeting in Yeast. NATO ASI Series, vol 71. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84921-3_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84921-3_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84923-7

  • Online ISBN: 978-3-642-84921-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics