Advertisement

Yeast Mitochondrial Translation: Nuclear Genes Involved in the Expression of the Mitochondrial Genome

  • T. Rinaldi
  • M. Valens
  • M. Bolotin-Fukuhara
Conference paper
Part of the NATO ASI Series book series (volume 71)

Abstract

A search for nuclear genes involved in mitochondrial translation has been made using genetic suppressors and multicopy suppressors of mitochondrial mutations which affect protein synthesis.

Three different mitochondrial mutations ( two localized in the 21SrRNA gene and one in the Asp tRNA gene) have been chosen for this purpose. In all cases, nuclear suppressors have been characterized which have biochemical and physiological properties compatible with components of the translational apparatus. Cloning one of those led us to the identification of a new yeast gene called SMT1.

Several multicopy suppressors have also been isolated. With this method, we uncovered a new pathway related to mitochondrial translation.We also found that overexpression of both mtEF-Tu and mtAspartyl tRNA synthetase can correct a deficiency in the 3′ end maturation of the mitochondrial Asp tRNA.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdulkarim F, Tuohy, TMF, Buckingham RH, Hughes D (1991) Missense substitutions lethal to essential functions of EF-Tu. Biochimie 73: 1457–1464PubMedCrossRefGoogle Scholar
  2. Ben Asher E, Groudinsky O, Dujardin G, Altamura N, Kermorgant M, Slonimski PP (1989) Novel class of nuclear genes involved in both mRNA splicing and protein synthesis in Saccharomyces cerevisiae mitochondria. Mol. Gen. Genet. 215: 517–528CrossRefGoogle Scholar
  3. Berensten SM, Jahn M, Söll D ( 1992) Aminoacyl tRNA synthetase-induced cleavage of tRNA. Nucl. Acids Res. 20: 1523–1530Google Scholar
  4. Bolotin-Fukuhara M, Faye G, Fukuhara H (1977) Temperature-sensitive respiratory-deficient mitochondrial mutations: isolation and genetic mapping. Mol. Gen. Genet. 152: 295–306PubMedCrossRefGoogle Scholar
  5. Bolotin-Fukuhara M. (1979) Mitochondrial and nuclear mutations that affect the biogenesis of the mitochondrial ribosomes of yeast. I. Genetics. Mol. Gen. Genet. 177: 39–46CrossRefGoogle Scholar
  6. Bolotin-Fukuhara M, Sor F, Fukuhara H (1983) Mitochondrial ribosomal RNA mutations and their nuclear suppressors. In: “Mitochondria 83 ”. Schweyen H et al, eds. Walter de Gruyter, Berlin, pp. 455–467Google Scholar
  7. Contamine V, Bolotin-Fukuhara M (1984). A mitochondrial ribosomal RNA mutation and its nuclear suppressors. Mol. Gen. Genet. 193: 280–285PubMedCrossRefGoogle Scholar
  8. Daignan-Fornier B, Su I, Contamine V, Bolotin-Fukuhara M (1988) A genetic approach of molecular interactions in yeast mitochondrial ribosomes. In “Genetics of Translation: New Approaches” M. Tuite, M. Picard and M. Bolotin-Fukuhara, eds. NATO/ASU Workshop. Springer-Verlag, Berlin, pp. 159–169Google Scholar
  9. Daignan-Fornier B, Bolotin-Fukuhara M (1988) Mutational study of the rRNA in yeast mitochondria: functional importance of T1696 in the large rRNA gene. Nucleic Acids Research 16: 9299–9306PubMedCrossRefGoogle Scholar
  10. Daignan-Fornier B, Bolotin-Fukuhara M (1989) Functional exploration of the yeast (-S. cerevisiae ) genome: use of a mini-Mu transposon to analyse randomly cloned DNA sequences. Yeast, 5: 259–269.Google Scholar
  11. Dujon B (1980) Sequence of the intron and flanking exons of the mitochondrial 21SrRNA gene of yeast strains having different alleles. Cell 20: 185–197PubMedCrossRefGoogle Scholar
  12. ElElj-Fridhi N, Pallier C., Guetari M, Bolotin-Fukuhara M (1991) Mutational studies of the major tRNA region of the Scerevisiae genome. Current Genetics 19: 301–308PubMedCrossRefGoogle Scholar
  13. Faye G, Bolotin-Fukuhara M, Fukuhara H (1976) Mitochondrial mutations that affect mitochondrial transfer ribonucleic acid in Saccharomyces cerevisiae. In: “ The Genetics and Biogenesis of Chloroplasts and Mitochondria”. Ed. T. Bücher et al. Elsevier/North Holland Biomedical Press. Amsterdam. The Netherlands, pp: 613–618Google Scholar
  14. Gampel A, Tzagoloff A (1989) Homology of aspartyl-and lysyl-tRNA synthetases. Proc. Natl. Acad. Sci.USA 86: 6023–6027PubMedCrossRefGoogle Scholar
  15. Gietz RD, Sugino A (1988) New yeast-E. coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74: 527–534PubMedCrossRefGoogle Scholar
  16. Grivell LA (1989) Nucleo-mitochondrial interactions in mitochondrial biogenesis. Eur. J. Biochem. 182: 477–493PubMedCrossRefGoogle Scholar
  17. Groudinski O, Dujardin G, Slonimski PP (1981) Long range control circuits within mitochondria and between nucleus and mitochondria. II. Genetic and biochemical analyses of suppressors which selectively alleviate the mitochondrial intron mutations. Mol. Gen. Genet. 184: 493–503Google Scholar
  18. Guetari M, Zelikson R, Bolotin-Fukuhara M (1987) Nucleo-mitochondrial interactions involved in the biogenesis of mitochondrial ribosomes: identification of a possible conditional mutation of the Var 1 gene and its nuclear suppressors. Mol. Gen. (Life sci. Adv. ) 6: 29–34Google Scholar
  19. Julou C, Bolotin-Fukuhara M (1982). Genetics of mitochondrial ribosomes of yeast: mitochondrial lethality of a double mutant carrying two mutations of the 21S rRNA gene. Mol. Gen. Genet. 188: 256–260PubMedCrossRefGoogle Scholar
  20. Julou C, Contamine V, Sor F, Bolotin-Fukuhara M (1984) Mitochondrial ribosomal RNA genes of yeast: their mutations and a common nuclear suppressor. Mol. Gen. Genet. 193: 275–279PubMedCrossRefGoogle Scholar
  21. Myers AM, Pape L, Tzagoloff A. (1985) Mitochondrial protein synthesis is required for maintenance of intact mitochondrial genomes in Saccaromyces cerevisiae. EMBO J. 4: 2087–2092PubMedGoogle Scholar
  22. Nagata S, Tsunetsugu-Yokota Y, Naito A, Kaziro Y (1983) Molecular cloning and sequence determination of the nuclear gene coding for mitochondrial elongation factor Tu of S. cerevisiae. Proc. Natl. Acad. sci. USA 80: 6192–6196CrossRefGoogle Scholar
  23. Pfanner N, Neupert N (1990) The mitochondrial protein import apparatus. Ann. Rev. Biochem. 59: 331–353PubMedCrossRefGoogle Scholar
  24. Sor F, Faye G (1979) Mitochondrial and nuclear mutations that affect the biogenesis of the mitochondrial ribosomes of yeast II. Biochemistry. Mol. Gen. Genet. 177: 47–56CrossRefGoogle Scholar
  25. Valens M, Rinaldi T, Daignan-Fornier B, Bolotin-Fukuhara M (1991) Identification of nuclear genes which participate to mitochondrial translation in Scerevisiae. Biochimie 12: 1525–1532CrossRefGoogle Scholar
  26. Wiesenberger G, Link TA, von Ahsen U, Waldherr M, Schweyen R (1991) MRS3 and MRS4, two suppressors of mtRNA splicing defects in yeast, are new members of the mitochondrial carrier family. J. Mol. Biol. 217: 23–37PubMedCrossRefGoogle Scholar
  27. Zennaro E, Francisci S, Ragnini A, Frontali L, Bolotin-Fukuhara M (1989) A point mutation in a mitochondrial tRNA gene abolishes its 3′ end processing. Nucleic Acids Research 17: 5751–5764PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • T. Rinaldi
    • 1
  • M. Valens
    • 1
  • M. Bolotin-Fukuhara
    • 1
  1. 1.Laboratoire de Génétique Moléculaire. I G M ( URA D 1354 du CNRS)Université Paris-Sud.Orsay CedexFrance

Personalised recommendations