Skip to main content

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

  • 74 Accesses

Abstract

The basic objective of radiation therapy of malignant tumours is to obtain local and regional control. This is done by destroying the proliferative capacity of those tumour cells that are responsible for tumour growth. These cells then die, disintegrate and are resorbed, finally leading to tumour shrinkage. Accompanying radical or definitive treatment is the risk of normal tissue damage and physiological alterations. There is a narrow dose range that leads to tolerable acute and chronic side-effects while maximizing the potential for locoregional control. (Calabresi et al. 1985; Perez and Brady 1987; DeVita et al. 1989)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdelaal AS, Nias AHW (1979) Regression, recurrence and cure in an irradiated mouse tumour. JR Soc Med 72; 100–105

    CAS  Google Scholar 

  • Abdelaal AS, Wheldon TE, Clarke BM (1980) Perturbation of the growth kinetics of C3H mouse mammary carcinoma by irradiation of tumour and host and by attempted pre-immunization of host. Br J Cancer 41: 567–576

    Article  PubMed  CAS  Google Scholar 

  • Afzal SMJ, Tenforde TS, Kavanau KS, Curtis SB (1991) Repopulation kinetics of rat rhabdomyosarcoma tumors following single and fractionated doses of low-LET and high-LET radiation. Radiat Res 127: 230–233

    Article  PubMed  CAS  Google Scholar 

  • Aherne WA, Camplejohn RS, Wright NA (1977) An introduction to cell population kinetics. Arnold, London

    Google Scholar 

  • Altman KI, Gerber GB (1983) The effect of ionizing radiations on connective tissue. Adv Radiat Biol 10: 237–304

    CAS  Google Scholar 

  • Barendsen GW (1968) Responses of cultured cells, tumours and normal tissues to radiations of different linear energy transfer. In: Ebert M, Howard A (eds) Current topics in radiation research, vol IV. North-Holland, Amsterdam, pp 295–356

    Google Scholar 

  • Barendsen GW, Broerse J J (1969) Experimental radiotherapy of a rat rhabdomyosarcoma with 15MeV neutrons and 300 kV x-rays. I. Effects of single exposures. Eur J Cancer 5: 373–391

    Article  PubMed  CAS  Google Scholar 

  • Barendsen GW, Broerse J J (1970) Experimental radiotherapy of a rat rhabdomyosarcoma with 15MeV neutrons and 300 kV x-rays. II. Effects of fractionated treatments, applied five times a week for several weeks. Eur J Cancer 6: 89–109

    Google Scholar 

  • Beck HP, Brammer I, Zywietz F, Jung H (1981) The application of flow cytometry for the quantification of the response of experimental tumours to irradiation. Cytometry 2: 44–46

    Article  PubMed  CAS  Google Scholar 

  • Beck-Bornholdt HP, Peacock JH, Stephens TC (1985) Kinetics of cellular inactivation by fractionated and hyperfractionated irradiation in Lewis lung carcinoma. Int J Radiat Oncol Biol Phys 11: 1171–1177

    Article  PubMed  CAS  Google Scholar 

  • Begg AC (1977) Cell loss from several types of solid murine tumour: comparison of 125I-iododeoxyuridine and tritiated thymidine methods. Cell Tissue Kinet 10: 409–427

    PubMed  CAS  Google Scholar 

  • Bowen ID, Bowen SM (1990) Programmed cell death in tumours and tissues. Chapman and Hall, London

    Google Scholar 

  • Brammer I, Jung H (1987) Morphometry of irradiated tumors. In: Kallman RF (ed) Rodent tumor models in experimental cancer therapy. Pergartion, New York, pp 97–100

    Google Scholar 

  • Brammer I, Zywietz F, Jung H (1979) Changes of histological and proliferative indices in the Walker carcinoma with tumour size and distance from blood vessel. Eur J Cancer 15: 1329–1336

    Article  PubMed  CAS  Google Scholar 

  • Brammer I, Zywietz F, Beck-Bornholdt HP, Jung H (1992) Kinetics of depopulation, repopulation and host cell infiltration in the rhabdomyosarcoma R1H after 14MeV neutron irradiation. Int J Radiat Biol 61: 703–711

    Article  PubMed  CAS  Google Scholar 

  • Calabresi P, Schein PS, Rosenberg SA (1985) Medical oncology: basic principles and clinical management of cancer. Macmillan, New York

    Google Scholar 

  • Casarett GW (1980) Radiation histopathology. CRC Press, Boca Raton

    Google Scholar 

  • Choi CH, Sedlacek RS, Suit HD (1979) Radiation-induced osteogenic sarcoma of C3H mouse: effects of Corynebacterium parvum and WBI on its natural history and response to irradiation. Eur J Cancer 15: 433–442

    Article  PubMed  CAS  Google Scholar 

  • Cooper EH (1973) The biology of cell death in tumours. Cell Tissue Kinet 6: 87–95

    PubMed  CAS  Google Scholar 

  • Cooper EH, Bedford A J, Kenny TE (1975) Cell death in normal and malignant tissues. In: Klein G, Weinhouse S (eds) Advances in cancer research, vol 21. Academic, New York, pp 59–120

    Google Scholar 

  • Curtis SB, Barendsen GW, Hermens AF (1973) Cell kinetic model of tumour growth and regression for a rhabdomyosarcoma in the rat: undisturbed growth and radiation response to large single doses. Eur J Cancer 9: 81–87

    Article  PubMed  CAS  Google Scholar 

  • Demeestere M, Rockwell S, Valieron AJ, Frindel E, Tubiana M (1980) Cell proliferation in EMT6 tumours treated with single doses of x-rays or hydroxyurea. II. Computer simulations. Cell Tissue Kinet 13: 309–317

    PubMed  CAS  Google Scholar 

  • Denekamp J (1972) The relationship between the ‘cell loss factor’ and the immediate response to radiation in animal tumours. Eur J Cancer 8: 335–340

    Article  PubMed  CAS  Google Scholar 

  • Denekamp J (1982) Cell kinetics and cancer therapy. Charles C. Thomas, Springfield, 111

    Google Scholar 

  • Denekamp J (1986) Cell kinetics and radiation biology. Int J Radiat Biol 49: 357–380

    Article  CAS  Google Scholar 

  • Dethlefsen LA, Sorensen J, Snively J (1977) Cell loss from three established lines of the C3H mouse mammary tumor: a comparison of the 125I-UdR and the 3H-TdR-autoradiographic methods. Cell Tissue Kinet 10: 447–459

    PubMed  CAS  Google Scholar 

  • DeVita VT, Hellman S, Rosenberg SA (1989) Cancer: principles and practice of oncology. J.B. Lippincott, Philadelphia

    Google Scholar 

  • Dvorak HF (1986) Tumors: wounds that do not heal. N Engl J Med 315: 1650–1659

    Article  PubMed  CAS  Google Scholar 

  • Eidus LK, Korystov YN, Dobrovinskaja OR, Shaposhnikova VV (1990) The mechanism of radiation-induced interphase death of lymphoid cells: a new hypothesis. Radiat Res 123: 17–21

    Article  PubMed  CAS  Google Scholar 

  • Elkind MM, Han A, Volz KW (1963) Radiation response of mammalian cells grown in culture. IV. Dose dependence of division delay and postirradiation growth of surviving and nonsurviving Chinese hamster cells. J Natl Cancer Inst 30: 705–721

    Google Scholar 

  • Falkvoll KH (1990a) The occurrence of apoptosis, abnormal mitoses, cells dying in mitosis and micronuclei in a human melanoma xenograft exposed to single dose irradiation. Strahlenther Onkol 166: 487–492

    PubMed  CAS  Google Scholar 

  • Falkvoll KH (1990b) Histological study of the regrowth of a human melanoma xenograft exposed to single dose irradiation. APMIS 98: 758–764

    Article  PubMed  CAS  Google Scholar 

  • Franko AJ, Kallman RF (1980) Cell loss and influx of labeled host cells in three transplantable mouse tumors using [125I]UdR release. Cell Tissue Kinet 13: 381–393

    PubMed  CAS  Google Scholar 

  • Franko AJ, Kallman RF, Rapacchietta D, Kelley SD (1980) 125IUdR loss as a measure of tumour cell loss: influence of reutilization and influx of labelled host cells. Br J Cancer 41 [Suppl IV]: 69–73

    Google Scholar 

  • Frindel E, Vassort F, Tubiana M (1970) Effects of irradiation on the cell cycle of an experimental ascites tumour of the mouse. Int J Radiat Biol 17: 329–337

    Article  CAS  Google Scholar 

  • Fujiwara K, Watanabe T (1990) Effects of hyperthermia, radiotherapy and thermoradiotherapy on tumor microvascular permeability. Acta Pathol Jpn 40: 79–84

    PubMed  CAS  Google Scholar 

  • Furuse T, Kasuga T (1983) Difference in 3H-thymidine incorporation after irradiation between murine B16 melanoma and squamous cell carcinoma in vivo. Gann 74: 232–239

    PubMed  CAS  Google Scholar 

  • George KC, van Beuningen D, Streffer C (1988) Growth, cell proliferation and morphological alterations of a mouse mammary carcinoma after exposure to x-rays and hyperthermia. Recent Results Cancer Res 107: 113–117

    PubMed  CAS  Google Scholar 

  • George KC, Streffer C, Pelzer T (1989) Combined effects of x-rays, Ro 03-8799, and hyperthermia on growth, necrosis, and cell proliferation in a mouse tumor. Int J Radiat Oncol Biol Phys 16: 1119–1122

    Article  PubMed  CAS  Google Scholar 

  • Geraci JP, Thrower PD, Jackson KL, Christensen GM, Fox MS (1974) The r. b. e. of cyclotron fast neutrons for interphase death in rat thymocytes in vitro. Int J Radiat Biol 25: 403–405

    Article  CAS  Google Scholar 

  • Gilman AG, Rail TW, Nies AS, Taylor P (1990) Goodman and Gilman’s the pharmacological basis of therapeutics. Pergamon, New York

    Google Scholar 

  • Goldstein R, Okada S (1969) Interphase death of cultured mammalian cells (L5178Y). Radiat Res 39: 361–373

    Article  PubMed  CAS  Google Scholar 

  • Goldstein P, Ojcius DM, Young JDE (1991) Cell death mechanisms and the immune system. Immunol Rev 121: 29–65

    Article  Google Scholar 

  • Hall EJ (1988) Radiobiology for the radiologist. J.B. Lippincott, Philadelphia

    Google Scholar 

  • Harris AW, Lowenthal JW (1982) Cells of some cultured lymphoma lines are killed rapidly by x-rays and by bleomycin. Int J Radiat Biol 42: 111–116

    Article  CAS  Google Scholar 

  • Hedges MJ, Hornsey S (1978) The effects of x-rays and neutrons on lymphocyte death and transformation. Int J Radiat Biol 33: 291–300

    Article  CAS  Google Scholar 

  • Hendry JH, Potten CS (1982) Intestinal cell radiosensitivity: a comparison for cell death assayed by apoptosis or by a loss of clonogenicity. Int J Radiat Biol 42: 621–628

    Article  CAS  Google Scholar 

  • Hendry JH, Scott D (1987) Loss of reproductive integrity of irradiated cells, and its importance in tissues. In: Potten CS (ed) Perspectives on mammalian cell death. Oxford University Press, Oxford, pp 160–183

    Google Scholar 

  • Hendry JH, Potten CS, Chad wick C, Bianchi M (1982) Cell death (apoptosis) in the mouse small intestine after low doses: effects of dose-rate, 14.7 MeV neutrons, and 600 MeV (maximum energy) neutrons. Int J Radiat Biol 42: 611–620

    Article  CAS  Google Scholar 

  • Hermens AF (1973) Variations in the cell kinetics and the growth rate in an experimental tumour during natural growth and after irradiation. PhD Thesis. Radiobiol Inst TNO, Rijswijk

    Google Scholar 

  • Higuchi M, Higashi N, Taki H, Osawa T (1990) Cytolytic mechanisms of activated macrophages: tumor necrosis factor and L-arginine-dependent mechanisms act syner- gistically as the major cytolytic mechanisms of activated macrophages. J Immunol 144: 1425–1431

    PubMed  CAS  Google Scholar 

  • Hirst DG, Denekamp J (1979) Tumour cell proliferation in relation to the vasculature. Cell Tissue Kinet 12: 31–42

    PubMed  CAS  Google Scholar 

  • Hirst DG, Denekamp J, Hobson B (1982) Proliferation kinetics of endothelial and tumour cells in three mouse mammary carcinomas. Cell Tissue Kinet 15: 251–261

    PubMed  CAS  Google Scholar 

  • Hofer KG (1987) Heat potentiation of radiation damage versus radiation potentiation of heat damage. Radiat Res 110: 450–457

    Article  PubMed  CAS  Google Scholar 

  • Ijiri K, Potten CS (1984) The re-establishment of hypersensitive cells in the crypts of irradiated mouse intestine. Int J Radiat Biol 46: 609–623

    Article  CAS  Google Scholar 

  • Iversen OH (1967) Kinetics of cellular proliferation and cell loss in human carcinomas. Eur J Cancer 3: 389–394

    Article  PubMed  CAS  Google Scholar 

  • Jones B, Camplejohn RS (1983) Stathmokinetic measurement of tumour cell proliferation in relation to vascular proximity. Cell Tissue Kinet 16: 351–355

    PubMed  CAS  Google Scholar 

  • Jung H (1982) Postirradiation growth kinetics of viable and nonviable CHO cells. Radiat Res 89: 88–98

    Article  PubMed  CAS  Google Scholar 

  • Jung H (1983) Radiation effects on tumours. In: Broerse J J, Barendsen GW, Kal HB, van der Kogel AJ (eds) Radiation research. Nijhoff, Amsterdam, pp 427–434

    Google Scholar 

  • Jung H, Beck HP, Brammer I, Zywietz F (1981) Depopulation and repopulation of the R1H rhabdomyosarcoma of the rat after x-irradiation. Eur J Cancer 17: 375–386

    Article  PubMed  CAS  Google Scholar 

  • Jung H, Krueger HJ, Brammer I, Zywietz F, Beck-Bornholdt HP (1990) Cell population kinetics of the rhabdomyosarcoma R1H of the rat after single doses of x-rays. Int J Radiat Biol 57: 567–589

    Article  PubMed  CAS  Google Scholar 

  • Kaiser HE (1989) Stroma, generally a non-neoplastic structure of the tumor. In: Liotta LA (ed) Influence of tumor development on the host. Kluwer Academic, Dordrecht, PP 1–8

    Chapter  Google Scholar 

  • Kampschmidt RF, Wells D (1968) Acid hydrolase activity during the growth, necrosis, and regression of the Jensen sarcoma, Cancer Res 28: 1938–1943

    PubMed  CAS  Google Scholar 

  • Kastan MB, Onyekwere O, Sidransky D, Vogelstein B, Craig RW (1991) Participation of p53 protein in the cellular response to DNA damage. Cancer Res 51: 6304–6311

    PubMed  CAS  Google Scholar 

  • Kelley SD, Kallman RF, Rapacchietta D, Franko AJ (1981) The effect of x-irradiation on cell loss in five solid murine tumours, as determined by the 125lUdR method. Cell Tissue Kinet 14: 611–624

    PubMed  CAS  Google Scholar 

  • Kerr JFR, Searle J (1972) A suggested explanation for the paradoxically slow growth rate of basal-cell carcinomas that contain numerous mitotic figures. J Pathol 107: 41–44

    Article  PubMed  CAS  Google Scholar 

  • Kerr JFR, Searle J (1980) Apoptosis: its nature and kinetic role. In: Meyn RE, Withers HR (eds) Radiation biology in cancer research. Raven, New York, pp 367–384

    Google Scholar 

  • Kerr JFR, Searle J, Harmon BV, Bishop CJ (1987) Apoptosis. In: Potten CS (ed) Perspectives on mammalian cell death. Oxford University Press, Oxford, pp 93–128

    Google Scholar 

  • Klebanoff SJ (1982) Oxygen-dependent cytotoxic mechanisms of phagocytes. In: Gallin JI, Fauci AS (eds) Advances in host defense mechanisms, vol I. Raven, New York, pp 111–162

    Google Scholar 

  • Kovacs CJ, Hopkins HA, Evans MJ, Looney WB (1976) Changes in cellularity induced by radiation in a solid tumour. Int J Radiat Biol 30: 101–113

    Article  CAS  Google Scholar 

  • Kovacs CJ, Evans MJ, Wakefield JA, Looney WB (1977) A comparative study of the response to radiation by experimental tumors with markedly different growth characteristics. Radiat Res 72: 455–468

    Article  PubMed  CAS  Google Scholar 

  • Kruman II, Matylevich NP, Beletsky IP, Afanasyev VN, Umansky SR (1991) Apoptosis of murine BW 5147 thymoma cells induced by dexamethasone and y-irradiation. J Cell Physiol 148: 267–273

    Article  PubMed  CAS  Google Scholar 

  • Kummermehr J (1985) Measurement of tumour clonogens in situ. In: Hendry JH, Potten CS (eds) Cell clones. Livingstone, Edinburgh, pp 215–222

    Google Scholar 

  • Lala PK (1972) Age-specific changes in the proliferation of Ehrlich ascites tumor cells grown as solid tumors. Cancer Res 32: 628–636

    PubMed  CAS  Google Scholar 

  • Lane DP (1992) p53, guardian of the genome. Nature 358: 15–16

    Google Scholar 

  • Lewis GP (1986) Mediators of inflammation. Wright, Bristol

    Google Scholar 

  • Martinez J, Georgoff I, Martinez J, Levine AJ (1991) Cellular localization and cell cycle regulation by a temperature- sensitive p53 protein. Genes Dev 5: 151–159

    Article  PubMed  CAS  Google Scholar 

  • Michalowski AS (1989) A case for humoral radiopathology. Br J Radiol 62: 1114–1114

    Google Scholar 

  • Moore JV (1983) Cytotoxic injury to cell populations of solid tumours. In: Potten CS, Hendry JH (eds) Cytotoxic insult to tissue. Churhill Livingstone, Edinburgh, pp 368–104

    Google Scholar 

  • Moore JV (1987) Death of cells and necrosis of tumours. In: Potten CS (ed) Perspectives on mammalian cell death. Oxford University Press, Oxford, pp 295–325

    Google Scholar 

  • Moore JV, Hopkins HA, Looney WB (1983) Response of cell populations in tumor cords to a single dose of cyclophosphamide or radiation. Eur J Cancer Clin Oncol 19: 73–79

    Article  PubMed  CAS  Google Scholar 

  • Moore JV, Hopkins HA, Looney WB (1984) Tumour-cord parameters in two rat hepatomas that differ in their radiobiological oxygenation status. Radiat Environ Biophys 23: 213–222

    Article  PubMed  CAS  Google Scholar 

  • Moore JV, Hasleton PS, Buckley CH (1985) Tumour cords in 52 human bronchial and cervical squamous cell carcinomas: inferences for their cellular kinetics and radiobiology. Br J Cancer 51: 407–413

    Article  PubMed  CAS  Google Scholar 

  • Nathan C, Srimal S, Farber C et al. (1989) Cytokine-induced respiratory burst of human neutrophils: dependence on extracellular matrix proteins and CD11/CD18 integrins. J Cell Biol 109: 1341–1349

    Article  PubMed  CAS  Google Scholar 

  • Nuesse M, Afzal SM J, Carr B, Kavanau K (1985) Cell cycle kinetic measurements in an irradiated rat rhabdomyosarcoma using a monoclonal antibody to bromodeoxy- uridine. Cytometry 6: 611–619

    Article  CAS  Google Scholar 

  • Perez CA, Brady LW (1987) Principles and practice of radiation oncology. J.B. Lippincott, Philadelphia

    Google Scholar 

  • Porschen W, Feinendegen L (1969) In-vivo-Bestimmung der Zellverlustrate bei Experimentaltumoren mit markiertem Joddeoxyuridin. Strahlentherapie 137: 718–723

    PubMed  CAS  Google Scholar 

  • Porschen W, Gartzen J, Gewehr K, Muehlensiepen H, Weber HJ, Feinendegen LE (1978) In vivo assay of the radiation sensitivity of hypoxic tumour cells; influence of y-rays, cyclotron neutrons, misonidazole, hyperthermia and mixed modalities. Br J Cancer 37 [Suppl III]: 194–197

    CAS  Google Scholar 

  • Porschen R, Porschen W, Muehlensiepen H, Feinendegen LE (1983) Cell loss from viable and necrotic tumour regions measured by,25I-UdR. Cell Tissue Kinet 16: 549–556

    PubMed  CAS  Google Scholar 

  • Potchen EJ, Kinzie J, Curtis C, Siegel BA, Studer RK (1972) Effect of irradiation on tumor microvascular permeability to macromolecules. Cancer 30: 639–642

    Article  PubMed  CAS  Google Scholar 

  • Promwichit P, Sturrock MG, Chapman IV (1982) Depressed DNasel inhibitor activity and delayed DNA damage in x-irradiated thymocytes. Int J Radiat Biol 42: 565–571

    Article  CAS  Google Scholar 

  • Rabes HM, Carl P, Rattenhuber U (1978) Determination of proliferative compartments in human tumors. Experientia 34: 1510–1511

    Article  PubMed  CAS  Google Scholar 

  • Refsum SB, Berdal P (1967) Cell loss in malignant tumours in man. Eur J Cancer 3: 235–236

    Article  PubMed  CAS  Google Scholar 

  • Rockwell S, Frindel E, Valleron AJ, Tubiana M (1978) Cell proliferation in EMT6 tumors treated with single doses of x-rays or hydroxyurea. I. Experimental results. Cell Tissue Kinet 11: 279–289

    PubMed  CAS  Google Scholar 

  • Roti Roti JL, Bohling V, Dethlefsen LA (1978) Kinetic models of C3H mouse mammary tumor growth: implications regarding tumor cell loss. Cell Tissue Kinet 11: 1–21

    PubMed  CAS  Google Scholar 

  • Rowley R, Hopkins HA, Betsill WL, Ritenour ER, Looney WB (1980) Response and recovery kinetics of a solid tumour after irradiation. Br J Cancer 42: 586–595

    Article  PubMed  CAS  Google Scholar 

  • Rubin P, Casarett G (1966) Microcirculation of tumors. Part II: The supervascularized state of irradiated regressing tumors. Clin Radiol 17: 346–355

    Article  PubMed  CAS  Google Scholar 

  • Sarraf CE, Bowen ID (1986) Kinetic studies on a murine sarcoma and an analysis of apoptosis. Br J Cancer 54: 989–998

    Article  PubMed  CAS  Google Scholar 

  • Sarraf CE, Bowen ID (1988) Proportions of mitotic and apoptotic cells in a range of untreated experimental tumours. Cell Tissue Kinet 21: 45–49

    PubMed  CAS  Google Scholar 

  • Schwamberger G, Flesch I, Ferber E (1991) Tumoricidal effector molecules of murine macrophages. Pathobiology 59: 248–253

    Article  PubMed  CAS  Google Scholar 

  • Steel GG (1967) Cell loss as a factor in the growth rate of human tumours. Eur J Cancer 3: 381–387

    Article  PubMed  CAS  Google Scholar 

  • Steel GG (1968) Cell loss from experimental tumours. Cell Tissue Kinet 1: 193–207

    Google Scholar 

  • Steel GG (1977) Growth kinetics of tumours. Clarendon, Oxford

    Google Scholar 

  • Steel LK, Hughes HN, Waiden TL (1988) Quantitative, functional and biochemical alterations in the peritoneal cells of mice exposed to whole-body gamma-irradiation. I. Changes in cellular protein, adherence properties and enzymatic activities associated with platelet-activating factor formation and inactivation, and arachidonate metabolism. Int J Radiat Biol 53: 943–964

    Article  CAS  Google Scholar 

  • Stephens TC, Currie GA, Peacock JH (1978) Repopulation of y-irradiated Lewis lung carcinoma by malignant cells and host macrophage progenitors. Br J Cancer 38: 573–582

    Article  PubMed  CAS  Google Scholar 

  • Streffer C, van Beuningen D (1991) Cellular radiobiology. In: Scherer E, Streffer C, Trott KR (eds) Radiopathology of organs and tissues. Springer, Berlin, pp 1–31

    Google Scholar 

  • Tanaka N, Tanabe C, Okumura Y, Murakami K (1979) Post-irradiation kinetics of the C3H/He mouse mammary carcinoma as regards tumor volume regrowth time and cell loss. Strahlentherapie 155: 58–62

    PubMed  CAS  Google Scholar 

  • Tannock IF (1968) The relation between cell proliferation and the vascular system in a transplanted mouse mammary tumour. Br J Cancer 22: 258–273

    Article  PubMed  CAS  Google Scholar 

  • Tannock IF (1969) A comparison of cell proliferation parameters in solid and ascites Ehrlich tumours. Cancer Res 29: 1527–1534

    PubMed  CAS  Google Scholar 

  • Tannock IF (1970) Population kinetics of carcinoma cells, capillary endothelial cells, and fibroblasts in a transplanted mouse mammary tumor. Cancer Res 30: 2470–2476

    PubMed  CAS  Google Scholar 

  • Tannock IF (1972) Oxygen diffusion and the distribution of cellular radiosensitivity in tumours. Br J Radiol 45: 515–524

    Article  PubMed  CAS  Google Scholar 

  • Tannock IF, Howes A (1973) The response of viable tumor cords to a single dose of radiation. Radiat Res 55: 477–486

    Article  PubMed  CAS  Google Scholar 

  • Tarnok A (1988) Histochemischer Nachweis und Quanti-fizierung der Leukozyten im unbehandelten und bestrahlten Rhabdomyosarkom R1H der Ratte. PhD Thesis, University of Hamburg

    Google Scholar 

  • Tarnok A, Brammer I (1990) Population kinetics and nuclear/ cytoplasmic ratio of mononuclear phagocytes in the x-irradiated rhabdomyosarcoma R1H. In: Burger G, Oberholzer M, Vooijs GP (eds) Advances in analytical cellular pathology. Excerpta Medica, Amsterdam, pp 281–282

    Google Scholar 

  • Tenforde TS, Kavanau KS, Afzal SM J, Curtis SB (1990) Host cell cytotoxicity, cellular repopulation dynamics, and phase-specific cell survival in x-irradiated rat rhabdomyo-sarcoma tumors. Radiat Res 123: 32–43

    Article  PubMed  CAS  Google Scholar 

  • Thomlinson RH (1960) An experimental method for comparing treatments of intact malignant tumours in animals and its application to the use of oxygen in radiotherapy. Br J Cancer 14: 555–576

    Article  PubMed  CAS  Google Scholar 

  • Thomlinson RH (1973) Radiation and the vascularity of tumours. Br Med Bull 29: 29–32

    PubMed  CAS  Google Scholar 

  • Thomlinson RH, Gray LH (1955) The histological structure of some human lung cancers and the possible implications for radiotherapy. Br J Cancer 9: 539–549

    Article  PubMed  CAS  Google Scholar 

  • Trott KR (1974) Relation between division delay and damage expressed in later generations. In: Ebert M, Howard A (eds) Current topics in radiation research, vol II. North- Holland, Amsterdam, pp 336–337

    Google Scholar 

  • Trott KR, Kummermehr J (1982) Split dose recovery of a mouse tumour and its stroma during fractionated irradiation. Br J Radiol 55: 841–846

    Article  PubMed  CAS  Google Scholar 

  • van der Bosch J, Rueller S, Horn D, Schlaak M (1991) Monocyte-mediated growth control and the induction of tumor cell death. Pathobiology 59: 243–247

    Article  PubMed  Google Scholar 

  • Vaupel P (1979) Oxygen supply to malignant tumors. In: Peterson HI (ed) Tumor blood circulation: angiogenesis, vascular morphology and blood flow of experimental and human tumors. CRC Press, Boca Raton, pp 143–168

    Google Scholar 

  • Vicker MG, Bultmann H, Glade U, Haefker T (1991) Ionizing radiation at low doses induces inflammatory reactions in human blood. Radiat Res 128: 251–257

    Article  PubMed  CAS  Google Scholar 

  • Vogler H (1986) Zelluläre Inaktivierungskinetik beim Rhabdomyosarkom R1H der Ratte während fraktionierter Röntgenbestrahlung. PhD Thesis, University of Hamburg

    Google Scholar 

  • von Szczepanski L, Trott KR (1975) Post-irradiation proliferation kinetics of a serially transplanted murine adenocarcinoma. Br J Radiol 48: 200–208

    Article  PubMed  CAS  Google Scholar 

  • Waiden TL, Farzaneh NK (1990) Biochemistry of ionizing radiation. Raven, New York

    Google Scholar 

  • Watkins DK (1975) Lysosomes and radiation injury. In: Dingle JT, Dean RT (eds) Lysosomes in biology and pathology, vol 4. North-Holland, Amsterdam (Frontiers of Biology, vol 43 ) pp 147–166

    Google Scholar 

  • Yamaura H, Matsuzawa T (1979) Tumour regrowth after irradiation: an experimental approach. Int J Radiat Biol 35: 201–219

    Article  CAS  Google Scholar 

  • Zywietz F (1990) Vascular and cellular damage in a murine tumour during fractionated treatment with radiation and hyperthermia. Strahlenther Onkol 166: 493–501

    PubMed  CAS  Google Scholar 

  • Zywietz F, Jung H (1980) Partial synchronization of three solid animal tumours by x-rays. Eur J Cancer 16: 1381–1388

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brammer, I., Jung, H. (1993). Cell Loss in Irradiated Tumours. In: Beck-Bornholdt, HP. (eds) Current Topics in Clinical Radiobiology of Tumors. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84918-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84918-3_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84920-6

  • Online ISBN: 978-3-642-84918-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics