Skip to main content

Changes in Skeletal Muscle Energetics During Sepsis

  • Conference paper
Book cover Yearbook of Intensive Care and Emergency Medicine 1993

Part of the book series: Yearbook of Intensive Care and Emergency Medicine 1993 ((YEARBOOK,volume 1993))

Abstract

Sepsis is the systemic inflanimatory response of the body to the serious infection that occurs once pathogens invade the bloodstream. It remains a leading cause of morbidity and mortality in hospitalized patients, especially those in ICU. Many of the overt physiologic and metabolic components of the systemic response to sepsis are fully characterized. The hypermetabolism which develops early in the course of the disease and which is associated with increased catabolism of the lean body mass (principally skeletal muscle) is well described. In addition, septic patients typically are febrile and may have defective oxygen utilization and elevated circulating lactate levels [1,2]. Ongoing sepsis, in the absence of successful therapeutic Intervention, is characterized by progressive failure of energy metabolism which ultimately causes shock, and death [3]. The pathophysiological Syndrome of shock constitutes a failure of the circulation to meet the metabolic requirements of the tissues. The neurohumoral response to volume loss or inadequate perfusion serves to redistribute flow such that the function of the heart is preserved at the expense of skin, kidney, splanchnic and skeletal muscle perfusion. Although shock is often de– fined, and manifest, in hemodynamic terms as hypotension and inadequate tissue perfusion, the essential defect may ultimately be one of cellular metabolic dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cerra FB (1987) Hypermetabolism, organ failure, and metabolic support. Surgery 101: 1–14

    PubMed  CAS  Google Scholar 

  2. Mizock B (1984) Septic shock: A metabolic perspective. Arch Intern Med 144: 579–585

    Article  PubMed  CAS  Google Scholar 

  3. Seigel JH, Cerra FB, Coleman B (1979) Physiological and metabolic correlations in human sepsis. Surgery 86: 163–193

    Google Scholar 

  4. Tresadern JC, Threlfall CJ, Wilford K, Irving MH (1988) Muscle adenosine 5’-triphosphate and creatine phosphate concentrations in relation to nutritional status and sepsis in man. Clin Sei 75: 233–242

    CAS  Google Scholar 

  5. Mori E, Hasebe M, Kobayashi K, Lijima N (1987) Alterations in metabolite levels in carbohydrate and energy metabolism of rat in hemorrhagic shock and sepsis. Metabolism 36: 14–20

    Article  PubMed  CAS  Google Scholar 

  6. Tanaka J, Sato T, Ksmiysms Y, Jones RT, Cowley RA, Trump BF (1982) Bacteremic shock: Aspects of high–energy metabolism following Escherichia Coli injection. J Surg Res 33: 49–57

    Google Scholar 

  7. McGivney A, Bradley SG (1979) Action of bacterial endotoxin and lipid A on mitochondrial enzyme activities of cells in culture and subcellular fraction. Infect Immunol 25: 664–671

    CAS  Google Scholar 

  8. Greer G, Epps W, Vail W (1973) Interaction of lipopolysaccharides with mitochondria. I. Quantitative assay of Salmonella typhimurium lipopolysaccharides with isolated mitochondria. J Infect Dis 127: 551–556

    Google Scholar 

  9. Mela L, Bacalzo LV Jr, Miller LO (1971) Defective oxidative metabolism of rat liver mitochondria in hemorrhagic and endotoxin shock. Am J Physiol 220: 571–577

    PubMed  CAS  Google Scholar 

  10. Geller ER, Jankauskas RS, Kirkpatriek J (1986) Mitochondrial death in sepsis: A failed concept. J Surg Res 40: 514–517

    Google Scholar 

  11. Hinshaw LB, Archer LT, Beller BK, White GL, Schroeder TM, Holmes DD (1977) Glucose utilization and role of blood in endotoxin shock. Am J Physiol 233: E72–E79

    Google Scholar 

  12. Dantzker D (1989) Oxygen delivery and utilization in sepsis. Crit Care Med 5: 81–98

    CAS  Google Scholar 

  13. Wolf YG, Cotev S, Perel A, Manny J (1987) Dependence of oxygen consumption on cardiac Output in sepsis. Crit Care Med 15: 198–203

    Article  PubMed  CAS  Google Scholar 

  14. Astiz ME, Rackow EC, Weil MH, Schumer W (1988) Early impairment of oxidative metabolism and energy production in severe sepsis. Circ Shock 26: 311–320

    PubMed  CAS  Google Scholar 

  15. Hotchiss RS, Karl IE (1992) Reevaluation of the role of cellular hypoxia and bioenergetic failure in sepsis. JAMA 267: 1503–1510

    Article  Google Scholar 

  16. Wilmore DW, Goodwin CW, Aulick LH, Powarda MC, Mason AD, Pruitt BA (1980) Effect of injury and infection on visceral metabolism and circulation. Ann Surg 192: 491–504

    Article  PubMed  CAS  Google Scholar 

  17. Bergstrom J, Bostrom H, Fürst P, Hultman E, Vinnars E (1976) Preliminary studies of energy-rich phosphagens in muscle from severely ill patients. Crit Care Med 4: 197–204

    Article  PubMed  CAS  Google Scholar 

  18. Liaw KY, Askanazi J, Michelson CB, Kantrowitz LR, Fürst P, Kinney JM (1980) Effect of injury and sepsis on high energy phosphates in muscle and red cells. J Trauma 20: 755–759

    Article  PubMed  CAS  Google Scholar 

  19. Tresadern JC, Threlfall CJ, Wilford K, Irving MN (1988) Muscle adenosine 5’triphosphate and creatine phosphate concentrations in relation to nutritional status and sepsis in man. Clin Sei 75: 233–242

    CAS  Google Scholar 

  20. Bone RC (1992) Abnormal cellular metabolism in sepsis: A new interpretation. JAMA 267: 1518–1519

    Article  PubMed  CAS  Google Scholar 

  21. Windell CC, Baldwin SA, Davies A, Martin S, Pasternak CA (1990) Cellular stress induces a redistribution of the glucose transporter. FASEB 4: 1634–1635

    Google Scholar 

  22. Chaudry IH, Wichterman KH, Baue HE (1979) Effect of sepsis on tissue adenine nucleotide le– vels. Surgery 85: 205–211

    PubMed  CAS  Google Scholar 

  23. Chaudry IH (1983) Cellular mechanisms in shock and their correction. Am J Physiol 245: R117–R134

    PubMed  CAS  Google Scholar 

  24. Sayeed MM (1983) The plasma membrane in the pathogenesis of circulatory shock. In: Altura BM, Lefer AM, Schumer W (eds) Handbook of Shock and Trauma, Vol 1. Basic Science, Raven Press, New York, pp 225–282

    Google Scholar 

  25. Blum H, Schnall MD, Chance B, Buzby G (1988) Intracellular sodium flux and high-energy phosphorus metabolites in ischemic skeletal muscle. Am J Physiol 255: C377–C384

    PubMed  CAS  Google Scholar 

  26. Glynn IM (1984) The electrogenie sodium pump. In: Blaustein MP, Leiberman M (eds), Electrogenic Transport, Fundamental Principles and Physiological Implications, Raven Press, New York, pp 33–48

    Google Scholar 

  27. Trankey DD, Iiiner HP, Wagner IY (1979) The effect of septic shock on skeletal muscle action Potentials in the primate. Surgery 85: 638–643

    Google Scholar 

  28. Liaw KY, Chen CC, Shoei-Yn LS (1987) Alterations of Na+-K+ATPase, Ca2+-ATPase, and Mg2+-ATPase activities in erythrocyte, muscle, and liver of traumatic and septic patients. Circ Shock 22: 195–203

    PubMed  CAS  Google Scholar 

  29. Wurth MA, Sayeed MM, Baue AE (1972) Na+-K+ATPase activity in the liver with hemorrhagic shock. Proc Soc Exp Biol Med 139: 1238–1241

    PubMed  CAS  Google Scholar 

  30. Peitzman AB, Corbett WA, Iiiner HP, Shires GT (1980) Correlation of transmembrane potential with high energy phosphate levels in hemorrhagic shock in primates. Surg Forum 31: 5–8

    CAS  Google Scholar 

  31. Cunningham JN, Carter NW, Rector FC, Seidin DW (1971) Resting transmembrane potential difference of skeletal muscle in normal subjects and severely ill patients. J Clin Invest 50:49– 59

    Google Scholar 

  32. Curreri PW, Wilmore DW, Mason AD, Newsome TW, Asch MJ, Pruitt BW (1971) Intracellular cation alterations following major trauma: Effect of supranormal caloric intake. J Trauma 11: 390–396

    Google Scholar 

  33. Iiiner HP, Shires GT (1981) Membrane defect and energy status of rabbit skeletal muscle cells in sepsis and septic shock. Arch Surg 116: 1302–1305

    Article  Google Scholar 

  34. Sayeed MM (1987) Ion transport in circulatory and/or septic shock. Am J Physiol 252:R809– R821

    Google Scholar 

  35. Tracey KJ, Lowry SF, Beutler B, Cerami A, Albert JD, Shires GT (1976) Cachectin/tumor necrosis factor mediates changes of skeletal muscle plasma membrane potential. J Exp Med 164: 1368–1373

    Article  Google Scholar 

  36. Tellado JM, Garcia–Sabrido JL, Hanley JA, et al. (1989) Predicting mortality based on body composition analyses. Ann Surg 209: 81–87

    Article  PubMed  CAS  Google Scholar 

  37. Forsen S, Hoffman RA (1963) Study of moderately rapid chemical exchange reactions by means of nuclear magnetic double resonance. J Chem Phys 39: 2892–2901

    Article  CAS  Google Scholar 

  38. Holtzman D, Offutt M, Tsuji M, Neuringer L, Jacobs DO (1993) Creatine kinase reaction rate in the hypoxie brain. Dev Brain Research (in press)

    Google Scholar 

  39. Carlsson C (1975) Metabolic changes in the cerebral cortex of the rat induced by intravenous pentphalsodium. Acta Anaesth Scand (Suppl) 57: 7–11

    Article  CAS  Google Scholar 

  40. Petroff OAC, Prichard JW, Behar KL, et al (1984) In vivo phosphorus nuclear magnetic resonance spectroscopy in status epilepticus. Ann Neurol 16: 169–177

    Article  PubMed  CAS  Google Scholar 

  41. Rudin M, Sauter A (1989) The rate constants of the creatine kinase reaction in rat brain: A probe for brain function? Society for Magnetic Resonance in Medicine, Eighth Annual Scientific Meeting, vol 1: 489

    Google Scholar 

  42. Chance B, Veech RL (1988) Phosphorus magnetic resonance spectroscopy as a probe of nutritonal State. In: Kinney JM, Jeejeebhoy KN, Hill GH, Owen OE (eds) Nutrition and Metabolism in Patient Care. WB Saunders, Philadelphia, pp 119–128

    Google Scholar 

  43. Song SK, Hotchkiss RS, Karl IE, Ackermann JJH (1993) Concurrent quantification of tissue metabolism and blood flow and metabolism during sepsis. Magn Reson Med (in press)

    Google Scholar 

  44. Jacobs DO, Kobayashi T, Imagire J, Grant C, Kesselly B, Wilmore DW (1991) Sepsis alters skeletal muscle energetics and membrane function. Surgery 110: 318–326

    PubMed  CAS  Google Scholar 

  45. Gutierrez G, Pohil RJ, Andry JM, Strong R, Narayana P (1988) Bioenergetics of rabbit skeletal muscle during hypoxemia and ischemia. J Appl Physiol 65: 608–616

    PubMed  CAS  Google Scholar 

  46. Jacobs DO, Whitman G, Maris J, et al. (1985) 31P nuclear magnetic resonance spectroscopy of rat skeletal muscle during starvation. J Parenter Enter Nutr 9: 107a

    Google Scholar 

  47. Jacobs DO, Kobaysashi T, Wilmore DW (1990) Starvation alters forward flux through the creatine kinase pathway. Association for Academic Surgery (Abt)

    Google Scholar 

  48. Morrissey TM, Gatzen C, Rounds JD, et al (1992) Alterations in fluid distribution during sepsis are related to abnormal energetics. Surg Forum 43: 1–3

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jacobs, D.O., Mann, D.V. (1993). Changes in Skeletal Muscle Energetics During Sepsis. In: Vincent, JL. (eds) Yearbook of Intensive Care and Emergency Medicine 1993. Yearbook of Intensive Care and Emergency Medicine 1993, vol 1993. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84904-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84904-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56463-8

  • Online ISBN: 978-3-642-84904-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics