Skip to main content

The Time Factor for Late Reactions in Radiotherapy: Repopulation or Intracellular Repair?

  • Conference paper
Acute and Long-Term Side-Effects of Radiotherapy

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 130))

Abstract

When doses in radiotherapy are protracted over increasing periods of time, it is generally considered that very little extra dose is required (the time factor) to reach tolerance for late reactions. This is in contrast to repopulation in early-reacting tissues and in tumors (e.g., Withers et al. 1988). Nevertheless, time factors have been reported for late-reacting tissues, and even small values could sometimes be more important than in the cases of early-reacting normal tissues and tumors because of the greater steepness of dose-incidence curves for injury in late-reacting organs (e.g., Thames et al. 1989; Hendry 1989).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bedford JS, Goodhead DT (1989) Breakage of human interphase chromosomes by alpha particles and X-rays. Int J Radiat Biol 55: 635–643

    Article  Google Scholar 

  • Berry RJ (1971) LET dependence of lethal and non-lethal radiation damage in mammalian cells. Int J Radiat Biol 20: 184

    Google Scholar 

  • Blocher D (1988) DNA double-strand break repair determines the RBE of a particles. Int J Radiat Biol 54: 761–771

    Article  PubMed  CAS  Google Scholar 

  • Curtis HJ (1967) Biological mechanisms of delayed radiation damage in mammals. In: Ebert M, Howard A (eds) Current topics in radiation research, vol 3. North-Holland, Amsterdam, pp 139–174

    Google Scholar 

  • Ellis F (1967) Fractionation in radiotherapy. In: Deeley TJ, Wood CAP (eds) Modern trends in radiotherapy, vol 1. Butterworths, London, pp 34–51

    Google Scholar 

  • Feng Y, Guttenberger R, Thames HD, Stephens LC, Ang KK (1991) Repair kinetics in rat cervical spinal cord: significance for multiple fractions per day treatment. In: Chapman JD, Dewey WC, Whitmore GF (eds) Radiation research, vol 1. Academic, San Diego, p 185 (Congress abstracts)

    Google Scholar 

  • Field SB, Hornsey S (1974) Damage to mouse lung with neutrons and X-rays. Eur J Cancer 10: 621–627

    PubMed  CAS  Google Scholar 

  • Field SB, Hornsey S, Kutsutani Y (1976) Effect of fractionated irradiation on mouse lung and a phenomenon of slow repair. Br J Radiol 49: 700–707

    Article  PubMed  CAS  Google Scholar 

  • Fisher DR, Hendry JH, Scott D (1988) Long-term repair in vivo of colony-forming ability and chromosomal injury in X-irradiated mouse hepatocytes. Radiat Res 113: 40–50

    Article  PubMed  CAS  Google Scholar 

  • Frankenberg-Schwager M, Frankenberg D, Harbich R, Adamczyk C (1990) A comparative study of rejoining of DNA double-strand breaks in yeast irradiated with 3.5 MeV a-particles or with 30 MeV electrons. Int J Radiat Biol 57: 1151–1168

    Article  PubMed  CAS  Google Scholar 

  • Goodwin E, Blakely E, Ivery G, Tobias C (1989) Repair and misrepair of heavy-ioninduced chromosomal damage. Adv Space Res 9 (10): 83–89

    Article  PubMed  CAS  Google Scholar 

  • Hayashi S, Suit HD (1971) Effect of fractionation of radiation dose on callus formation at site of fracture. Radiology 101: 181–186

    PubMed  CAS  Google Scholar 

  • Hendry JH (1972) A difference in haemopoietic stem cell repopulation after D-T neutrons or X-irradiation. Int J Radiat Biol 22: 279–283

    Article  CAS  Google Scholar 

  • Hendry JH (1983) Mathematical aspects of colony growth, transplantation kinetics, and cell survival. In: Potten CS, Hendry JH (eds) Cell clones; manual of mammalian cell techniques. Churchill Livingstone, Edinburgh, pp 1–12

    Google Scholar 

  • Hendry JH (1989) Response of human organs to single (or fractionated equivalent) doses of irradiation. Int J Radiat Biol 56: 691–700

    Article  PubMed  CAS  Google Scholar 

  • Hendry JH (1991) The slower cellular recovery after higher-LET irradiations including neutrons, focusses on the quality of DNA breaks. Radiat Res 128 [Suppl 1]: 111–113

    Article  Google Scholar 

  • Hendry JH, Roberts SA (1991) The sensitivity of human tissues to changes in dose fractionation: deductions from the RCR survey among UK radiotherapists. Clin Oncol 3: 22–27

    Article  CAS  Google Scholar 

  • Hill SA, Smith KA, Williams KB, Denekamp J (1989) The fractionated response of mouse stroma after X-rays and neutrons: influence of early vs late expression of damage. Radiat Oncol 16: 129–137

    Article  CAS  Google Scholar 

  • Hopewell JW (1983) Radiation effects on vascular tissue. In: Potten CS, Hendry JH (eds) Cytotoxic insult to tissue: effects on cell lineages. Churchill Livingstone, Edinburgh, pp 228–257

    Google Scholar 

  • Hopewell JW, Wiernik G (1977) Tolerance of the pig kidney to fractionated X-irradiation. In: IAEA (eds) Radiobiological research and radiotherapy. IAEA, Vienna, pp 65–73

    Google Scholar 

  • Jen YM, Hendry JH (1993) Dose-fractionation sensitivity of mouse kidney clonogens measured using different interfraction intervals and postirradiation assay times. Radiother Oncol (to be published)

    Google Scholar 

  • Maciejewski B, Withers HR, Taylor JMG, Hliniak A (1990) Dose fractionation and regeneration in radiotherapy for cancer of the oral cavity and oropharynx: part 2. Normal tissue responses: acute and late effects. Int J Radiat Oncol Biol Phys 18: 101–111

    Article  PubMed  CAS  Google Scholar 

  • Nias NHS (1968) Clone size analysis: a parameter in the study of cell population kinetics. Cell Tissue Kinet 1: 153–165

    Google Scholar 

  • Overgaard J, Hjelm-Hansen M, Vendelbo Johansen L, Anderson AP (1988) Comparison of conventional and split-course radiotherapy as primary treatment in carcinoma of the larynx. Acta Oncol 27: 147–152

    Article  PubMed  CAS  Google Scholar 

  • Priestman TJ, Bullimore JA, Godden TP, Deutsch GP (1989) The Royal College of Radiologists’ Fractionation Survey. Clin Oncol 1: 39–46

    Article  CAS  Google Scholar 

  • Reinhold HS, Buisman GH (1975) Repair of radiation damage to capillary endothelium. Br J Radiol 48: 727–731

    Article  PubMed  CAS  Google Scholar 

  • Robbins MEC, Barnes DWH, Campling D, Hopewell JW, Knowles JF, Sansom JM, Simmonds RH (1991a) The relative biological effectiveness of fractionated doses of fast neutrons (42 MeVd_, Be) for normal tissues in the pig. Br J Radiol 64: 823830

    Google Scholar 

  • Robbins MEC, Bywaters T, Rezvani M, Golding SJ, Hopewell JW (1991b) Residual radiation-induced damage to the kidney of the pig as assayed by retreatment. Int J Radiat Biol 60: 917–928

    PubMed  CAS  Google Scholar 

  • Scott D, Gellard PA, Hendry JH (1984) Differential rates of loss of chromosomal aberrations in rat thyroids after x-rays or neutrons. Radiat Res 97: 64–70

    Article  PubMed  CAS  Google Scholar 

  • Soranson A (1990) Proliferation and function in normal and perturbed mouse kidney following irradiation. PhD thesis, CNAA, UK

    Google Scholar 

  • Stewart FA, Oussoren Y (1990) Re-irradiation of mouse kidneys: a comparison of retreatment tolerance after single and fractionated partial tolerance doses. Int J Radiat Biol 58: 531–544

    Article  PubMed  CAS  Google Scholar 

  • Stewart FA, Luts A, Lebesque JV (1989) The lack of long term recovery and reirradiation tolerance in the mouse kidney. Int J Radiat Biol 56: 449–462

    Article  PubMed  CAS  Google Scholar 

  • Tates AD, Broerse JJ, Neuteboom I, deVogel N (1982) Differential persistence of chromosomal damage induced in resting rat-liver cells by X-rays and 4.2 MeV neutrons. Mutat Res 92: 275–290

    Article  PubMed  CAS  Google Scholar 

  • Terry NHA, Ang KK, Hunter NR, Milas L (1988) Tissue repair and repopulation in the tumour bed effect. Radiat Res 114: 621–626

    Article  PubMed  CAS  Google Scholar 

  • Thames HD, Hendry JH (1987) Fractionation in radiotherapy. Taylor and Francis, London

    Google Scholar 

  • Thames HD, Hendry JH, Moore JV, Ang KK, Travis EL (1989) The high steepness of dose—response curves for late-responding normal tissues. Radiother Oncol 15: 49–53

    Article  PubMed  CAS  Google Scholar 

  • Thames HD, Bentzen SM, Turesson I, Overgaard M, van den Bogaert W (1990) Time-dose factors in radiotherapy: a review of the human data. Radiother Oncol 19: 219–235

    Article  PubMed  CAS  Google Scholar 

  • Travis EL, Down JD (1981) Repair to mouse lung after split doses of X-rays. Radiat Res 89: 166–174

    Article  Google Scholar 

  • Tucker SL, Travis EL (1990) Comments on a time-dependent version of the linear-quadratic model. Radiother Oncol 18: 155–163

    Article  PubMed  CAS  Google Scholar 

  • Turesson I, Notter G (1984) The influence of the overall treatment time in radiotherapy on the acute reaction: comparison of the effects of daily and twice-aweek fractionation on human skin. Int J Radiat Oncol Biol Phys 10: 607–619

    Article  PubMed  CAS  Google Scholar 

  • Turesson I, Thames HD (1989) Repair capacity and kinetics of human skin during fractionated radiotherapy: erythema, desquamation, and telangiectasia after 3 and 5 year’s follow-up. Radiother Oncol 15: 169–188

    Article  PubMed  CAS  Google Scholar 

  • Van der Kogel AJ (1991) The nervous system: radiobiology and experimental pathology. In: Schere E, Streffer C, Trott K-R (eds) Radiopathology of organs and tissues. Springer, Berlin Heidelberg New York, pp 191–212

    Google Scholar 

  • Van Dyk J, Mah K, Keane TJ (1989) Radiation-induced lung damage: dose-timefractionation considerations. Radiother Oncol 14: 55–69

    Article  PubMed  Google Scholar 

  • Westra A, Barendsen GW (1966) Proliferation characteristics of cultured mammalian cells after irradiation with sparsely and densely ionizing radiations. Int J Radiat Biol 11: 477–485

    Article  CAS  Google Scholar 

  • White A, Hornsey S (1978) Radiation damage to the rat spinal cord: the effect of single and fractionated doses of X-rays. Br J Radiol 51: 515–523

    Article  PubMed  CAS  Google Scholar 

  • White A, Hornsey A (1980) Time dependent repair of radiation damage in the rat spinal cord after x-rays and neutrons. Eur J Cancer 16: 957–962

    PubMed  CAS  Google Scholar 

  • Williams MV, Denekamp J (1984) Radiation-induced renal damage in mice: influence of fraction size. Int J Radiat Oncol Biol Phys 10: 885–893

    Article  PubMed  CAS  Google Scholar 

  • Williams MV, Stewart FA, Soranson JA, Denekamp J (1985) The influence of overall treatment time on renal injury after multifraction irradiation. Radiat Oncol 4: 87–92

    Article  CAS  Google Scholar 

  • Withers HR, Taylor JMG, Maciejewski B (1988) The hazard of accelerated tumor clonogen repopulation during radiotherapy. Acta Oncol 27: 131–146

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

Hendry, J.H., Jen, YM. (1993). The Time Factor for Late Reactions in Radiotherapy: Repopulation or Intracellular Repair?. In: Hinkelbein, W., Bruggmoser, G., Frommhold, H., Wannenmacher, M. (eds) Acute and Long-Term Side-Effects of Radiotherapy. Recent Results in Cancer Research, vol 130. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84892-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84892-6_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84894-0

  • Online ISBN: 978-3-642-84892-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics