Skip to main content

Myelopathy and Hyperfractionated Accelerated Radiotherapy: A Radiobiological Interpretation

  • Conference paper
Acute and Long-Term Side-Effects of Radiotherapy

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 130))

Abstract

Where there is a rapid repopulation of tumor clonogens, a gain in local control should be realized by administering radiation treatments in a shorter overall time, thereby reducing the opportunity for proliferation of tumor cells during the treatment. Because of the differential effect of fractionation in early-versus late-responding normal tissues, decreased overall treatment time must be done in the context of keeping the fraction size small. The only feasible approach is to administer multiple fractions per day and use short interfraction intervals. Provided repair of sublethal radiation damage is largely complete within the interfraction interval, excessive late morbidity would not be expected. These radiobiological rationales of accelerated hyperfractionated radiotherapy thus suggest an altered fractionation scheme in which the overall treatment time is reduced, the dose per fraction is reduced, and multiple fractions are given per day.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbatucci JS, Delozier T, Quint R, Roussel A, Brune D (1978) Radiation myelopathy of the cervical spinal cord: time, dose and volume factors. Int J Radiat Oncol Biol Phys 4: 239–248

    Article  PubMed  CAS  Google Scholar 

  • Ang KK, van der Kogel AJ, van der Schueren E (1985) Lack of evidence for increased tolerance of rat spinal cord with decreasing fraction doses below 2 Gy. Int J Radiat Oncol Biol Phys 11: 105–110

    Article  PubMed  CAS  Google Scholar 

  • Ang KK, Thames HD, van der Kogel Ai, van der Schueren E (1987) Is the rate of repair of radiation-induced sublethal damage in rat spinal cord dependent on the size of dose per fraction? Int J Radiat Oncol Biol Phys 13: 557–562

    Article  PubMed  CAS  Google Scholar 

  • Ang KK, Jiang GL, Thames HD, Stephens LC (1990) Repair kinetics in rat spinal cord (abstract). In: Proceedings of the 38th annual meeting of the Radiation Research Society, New Orleans, p 113

    Google Scholar 

  • Dische S (1991) Accelerated treatment and radiation myelitis. Radiother Oncol 20: 1–2

    Article  PubMed  CAS  Google Scholar 

  • Dische S, Saunders MI (1989) Continuous, hyperfractionated, accelerated radiotherapy (CHART): an interim report upon late morbidity. Radiother Oncol 6: 65–72

    Article  Google Scholar 

  • Dische S, Warburton MF, Saunders MI (1988) Radiation myelitis and survival in the radiotherapy of lung cancer. Int J Radiat Oncol Biol Phys 15: 75–81

    PubMed  CAS  Google Scholar 

  • Hopewell JW, Wright EA (1970) The nature of latent cerebral irradiation damage and its modification by hypertension. Br J Radiol 43: 161–167

    Article  PubMed  CAS  Google Scholar 

  • Joiner MC (1989) The dependence of radiation response on the dose per fraction. BIR Rep 19: 20–26

    Google Scholar 

  • Lavey RS, Johnstone AK, Tracy JT, Taylor JMG, McBride WH (1991) Effect of hyperfractionation on “spinal cord” tolerance. Int J Radiat Oncol Biol Phys 215: 164–165

    Google Scholar 

  • Marcus RB, Million RR (1990) The incidence of myelitis after irradiation of the cervical spinal cord. Int J Radiat Oncol Biol Phys 175: 163

    Google Scholar 

  • McCunniff AJ, Liang MJ (1989) Radiation tolerance of the cervical spinal cord. Int J Radiat Oncol Biol Phys 16: 675–678

    Article  PubMed  CAS  Google Scholar 

  • Peters Li, Ang KK (1986) Unconventional fractionation schemes in radiotherapy. In: DeVita V, Hellman S, Rosenberg A (eds) Important advances in oncology. Lippincott, Philadelphia, pp 269–286

    Google Scholar 

  • Reinhold HS, Kaalen JGAH, Unger-Gils K (1976) Radiation myelopathy of the thoracic spinal cord. Int J Radiat Oncol Biol Phys 1: 651–657

    Article  PubMed  CAS  Google Scholar 

  • Saunders MI, Dische S, Grosch EJ, Fermont DC, Ashford RFU, Maher EJ, Makepeace AR (1991) Experience with CHART. Int J Radiat Oncol Biol Phys 21: 871–878

    Article  PubMed  CAS  Google Scholar 

  • Schultheiss TE (1990) Spinal cord radiation “tolerance”: doctrine versus data. Int J Radiat Oncol Biol Phys 19: 219–221

    PubMed  CAS  Google Scholar 

  • Schultheiss TE, Higgins EM, El-Mandi AM (1984) The latent period in clinical radiation myelopathy. Int J Radiat Oncol Biol Phys 10: 1109–1115

    Article  PubMed  CAS  Google Scholar 

  • Thames HD (1985) An “incomplete-repair” model for survival after fractionated and continuous irradiations. Int J Radiat Biol 47: 319–339

    Article  CAS  Google Scholar 

  • Thames HD, Ang KK, Stewart FA, van der Schueren E (1988) Does incomplete repair explain the apparent failure of the basic LQ model to predict spinal cord and kidney responses to low doses per fraction? Int J Radiat Biol 54: 13–19

    Article  PubMed  CAS  Google Scholar 

  • Van de Bogaert W, van der Schueren E, Horiot JC (1986) (EORTC cooperative group of radiotherapy). Early results of the EORTC randomized clinical trial on multiple fractions per day ( MFD) and misonidazole in advanced head and neck cancer. Int J Radiat Oncol Biol Phys 12: 587–591

    Article  PubMed  Google Scholar 

  • Van der Kogel AJ (1986) Radiation-induced damage in the central nervous system: an interpretation of target cell responses. Br J Cancer 53 [Suppl]: 207–217

    Google Scholar 

  • Van der Kogel AJ (1989) Continuous hyperfractionated, accelerated radiotherapy. Radiother Oncol 16: 75–77

    Article  PubMed  Google Scholar 

  • Van der Schueren E, Landuyt W, Ang KK, van der Kogel AJ (1988) From 2 Gy to 1 Gy per fraction: sparing effect in rat spinal cord? Int J Radiat Oncol Biol Phys 14: 297–300

    Article  PubMed  Google Scholar 

  • Wara WM, Phillips TL, Sheline GE, Schwarde JG (1975) Radiation tolerance of the spinal cord. Cancer 35: 1558–1562

    Article  PubMed  CAS  Google Scholar 

  • Wong CS, van Dyk J, Simpson WJ (1991) Myelopathy following hyperfractionated accelerated radiotherapy for anaplastic thyroid carcinoma. Radiother Oncol 20: 3–9

    Article  PubMed  CAS  Google Scholar 

  • Wong CS, Minkin S, Hill RP (1992) Linear quadratic model underestimates sparing effect of small doses per fraction in rat spinal cord. Radiother Oncol 23: 176–184

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

Wong, C.S., Van Dyk, J., Hill, R.P. (1993). Myelopathy and Hyperfractionated Accelerated Radiotherapy: A Radiobiological Interpretation. In: Hinkelbein, W., Bruggmoser, G., Frommhold, H., Wannenmacher, M. (eds) Acute and Long-Term Side-Effects of Radiotherapy. Recent Results in Cancer Research, vol 130. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84892-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84892-6_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84894-0

  • Online ISBN: 978-3-642-84892-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics