Anomalous Sound Propagation and Thermal Anomalies in Glasses

  • W. Schirmacher
  • M. Wagener
Conference paper
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 112)


We discuss the vibrational properties of glasses in terms of a model which is based on the assumption of statistically fluctuating force constants. In this model a transition from nearly free sound propagation at low frequencies to strongly damped propagation (anomalous sound propagation) at higher frequencies is predicted. We discuss the observed vibrational anomalies in glasses in terms of this transition.


  1. [1]
    For a review see W.A. Philips (ed.), Amorphous Solids - Low Temperature Properties, Springer, Berlin, 1981Google Scholar
  2. [2]
    For a recent review of model descriptions see S.R. Elliott, Europhys. Lett. 19, 207 (1992)ADSCrossRefGoogle Scholar
  3. [3]
    J.J. Freeman and A.C. Anderson, Phys. Rev. B 34, 5684–90, (1986)ADSCrossRefGoogle Scholar
  4. [4]
    W. Schirmacher and M. Wagener, in: D. Richter, A.J. Dianoux, W. Petry and J. Teixeira (eds.), Dynamics of Disordered Materials, 231–4, Springer Proceedings in Physics 37, Heidelberg, (1989)Google Scholar
  5. [5]
    W. Schirmacher and M. Wagener, in: S. Hunklinger, W. Ludwig and G. Weiss (eds.), PHONONS’89, 531–3, World Scientific, Singapore, (1990)Google Scholar
  6. [6]
    W. Schirmacher and M. Wagener, Phil. Mag. 65, 607–13, (1992)CrossRefGoogle Scholar
  7. [7]
    M. Wagener, Doctoral Dissertation, TU München, (1992)Google Scholar
  8. [8]
    S. Alexander, J. Bernasconi, W.R. Schneider, R. Orbach, Rev. Mod. Phys. 53, 175 (1981)MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    W. Schirmacher and M. Wagener, in: U. Rössler (ed.), Festkörperprobleme/Advances in Solid State Physics 31, 39–58, Braunschweig, (1991), ViewegGoogle Scholar
  10. [10]
    These results are similar to those of the phonon-fracton model (A. Aharony, S. Alexander, O. Entin-Wohlman and R. Orbach, Phys. Rev. B 31, 2565–7, (1985)ADSCrossRefGoogle Scholar
  11. G. Polatsek and O. Entin-Wohlman, Phys. Rev. B 24, 7726–30, (1988)) but we think that our fluctuating force constant model is better suited for the description of a glass than invoking fractal topology.Google Scholar
  12. [11]
    E. Akkermans and R. Maynard, Phys. Rev. B 32, 7850–62, (1985)ADSCrossRefGoogle Scholar
  13. [12]
    S. Alexander, O. Entin-Wohlman and R. Orbach, Phys. Rev. B 34, 272–634, (1986)ADSGoogle Scholar
  14. [13]
    W. Schirmacher and M. Wagener, to be published, (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • W. Schirmacher
    • 1
  • M. Wagener
    • 1
  1. 1.Physik-Department E13Technische Universität MünchenGarchingFed. Rep. of Germany

Personalised recommendations