Dysplastic Nevi-Dysplastic Nevus Syndromes: Clinical Features and Genetic Aspects

  • J. Weiss
  • C. Garbe
  • P. Büttner
  • E. G. Jung
Part of the Recent Results in Cancer Research book series (RECENTCANCER, volume 128)


The incidence of cutaneous malignant melanoma (MM) is rising tremendously worldwide in white populations. The reasons for the dramatic increase are not entirely known. A number of factors have been linked etiologically with melanoma, including host factors such as skin complexion, hair and eye color, and number of melanocytic nevi and environmental factors such as sunlight exposure and a positive family history of malignant melanoma. The last mentioned risk factor was recognized in 1978 when the groups of Clark and Lynch simultaneously reported an inherited syndrome characterized by atypical moles and melanomas. Clark et al. (1978) termed this syndrome BK mole syndrome, using the initials of his affected families, while Lynch et al. (1978) called it FAMMM (familial atypical multiple mole melanoma) syndrome. The very exciting clinical feature of these families was the finding that in affected individuals, those with atypical or dysplastic nevi, the risk for developing melanoma approached 100%. The atypical nevus therefore was regarded as the putative precursor for MM. In the following years observations on atypical moles in melanoma-prone families were generalized and applied to individuals who had no family history of the tumor. The term dysplastic nevus syndrome (DNS) was first used for this condition by Elder et al. (1980) and is now widely accepted. Since then, however, many epidemiologic studies have demonstrated a significant lower melanoma risk for these individuals compared with the classic BK mole patients. Therefore, it is now commonly accepted that dysplastic nevi are both a risk indicator and possible precursors of malignant melanomas (Elder 1988).


Melanocytic Nevus Melanoma Risk Melanocytic Lesion Dysplastic Nevus Superficial Spreading Melanoma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ackermann AB (1988) What naevus is dysplastic, a syndrome and the commonest precursor of malignant melanoma? A riddle and an answer. Histopathology 13: 241–256CrossRefGoogle Scholar
  2. Albert LS, Sober AJ, Rhodes AR (1990) Cutaneous melanoma and bilateral retino-blastoma. J Am Acad Dermatol 23: 1001–1004PubMedCrossRefGoogle Scholar
  3. Albino AP, Nanus DM, Mentle IR et al. (1989) Analysis of ras oncogenes in malignant melanoma and precursor lesions: correlation of point mutations with differentiation phenotype. Oncogene 4: 1363–1374PubMedGoogle Scholar
  4. Anders A, Anders F, Zechel C et al. (1990) Ansätze zur Analyse der Initiation von Initialprozessen der Krebsbildung am Melanom-Modell von Xiphophorus. Arch Geschwulstforsch 60: 249–263PubMedGoogle Scholar
  5. Augustsson A, Stierner U, Suurküla M, Rosdahl I (1991) Prevalence of common and dysplastic naevi in a Swedish population. Br J Dermatol 124: 152–156PubMedCrossRefGoogle Scholar
  6. Bale SJ, Dracopoli NC (1989) Chromosome 9p and hereditary cutaneous malignant melanoma. J Natl Cancer Inst 81: 70PubMedGoogle Scholar
  7. Bale SJ, Dracopoli NC, Tucker MA et al. (1989) Mapping the gene for hereditary cutaneous malignant melanoma-dysplastic nevus to chromosome 1p. N Engl J Med 320: 1367–1372PubMedCrossRefGoogle Scholar
  8. Bergmann W, Palan A, Went LN (1986) Clinical and genetic studies in six Dutch kindreds with the dysplastic naevus syndrome. Ann Hum Genet 50: 249–258CrossRefGoogle Scholar
  9. Bergmann W, Watson P, de Jong J et al. (1990) Systemic cancer and the FAMMM syndrome. Br J Cancer 61: 932–936CrossRefGoogle Scholar
  10. Bishop JM (1987) The molecular genetics of cancer. Science 235: 305–311PubMedCrossRefGoogle Scholar
  11. Bohnert E, Weiß J, Jung EG (1989) Cytogenetische Auffälligkeiten bei Melanompatienten. Akt Dermatol 15: 96–98Google Scholar
  12. Clark WH, Ackerman AB (1989) An exchange of views regarding the dysplastic nevus controversy. Semin Dermatol 8: 229–250PubMedGoogle Scholar
  13. Clark WH, Reimer RR, Greene M et al. (1978) Origin of familial malignant melanomas from heritable melanocytic lesions. Arch Dermatol 114: 732–738PubMedCrossRefGoogle Scholar
  14. Cooke KR, Spears GFS, Elder DE, Greene MH (1989) Dysplastic naevi in a population-based survey. Cancer 63: 1240–1244PubMedCrossRefGoogle Scholar
  15. Cowan JM, Halaban R, Francke U (1988) Cytogenetic analysis of melanocytes from premalignant nevi and melanomas. J Natl Cancer Inst 80: 1159–1164PubMedCrossRefGoogle Scholar
  16. Crutcher WA, Sagebiel RW (1984) Prevalence of dysplastic naevi in a community practice. Lancet 1: 729PubMedCrossRefGoogle Scholar
  17. Dracopoli NC, Harnett P, Bale SJ et al. (1989) Loss of alleles from the distal short arm of chromosome 1 occurs late in melanoma tumor progression. Proc Natl Acad Sci USA 86: 4614–4618PubMedCrossRefGoogle Scholar
  18. English DR, Menz J Heenan et al. (1986) The dysplastic naevus syndrome in patients with cutaneous malignant melanoma in Western Australia. Med J Aust 145: 194–198PubMedGoogle Scholar
  19. Elder DE (1988) Dysplastic nevus syndrome-biological significance. Semin Oncol 15: 529–540PubMedGoogle Scholar
  20. Elder DE, Goldman LI, Goldman SC et al. (1980) Dysplastic nevus syndrome: a phenotypic association of sporadic cutaneous melanoma. Cancer 46: 1787–1794PubMedCrossRefGoogle Scholar
  21. Greene MH, Clark WH, Tucker MA et al. (1985) High risk of malignant melanoma in melanoma-prone families with dysplastic nevi. Ann Intern Med 102: 458–465PubMedGoogle Scholar
  22. Harnett P, Kefford RF (1988) Molecular models of tumorigenesis: application to familial and sporadic melanoma. Semin Oncol 15: 549–557PubMedGoogle Scholar
  23. Hollingsworth RE, Lee WH (1991) Tumor suppressor genes: new prospects for cancer research. J Natl Cancer Inst 83: 91–96PubMedCrossRefGoogle Scholar
  24. Holly EA, Kelly JW, Shpall SN, Shu-Hui Chiu MS (1987) Number of melanocytic nevi as a major risk factor for malignant melanoma. J Am Acad Dermatol 17: 459–468PubMedCrossRefGoogle Scholar
  25. Horowitz JM, Park SH, Bogenmann E et al. (1990) Frequent inactivation of the retinoblastoma anti-oncogene is restricted to a subset of human tumor cells. Proc Natl Acad Sci USA 87: 2775–2779PubMedCrossRefGoogle Scholar
  26. Jung EG, Bohnert E, Boonen H (1986) Dysplastic nevus syndrome: ultraviolet hypermutability confirmed in vitro by elevated sister chromatid exchanges. Dermatologica 173: 297–300PubMedCrossRefGoogle Scholar
  27. Kath R, Rodeck U, Menssen HD et al. (1989) Tumor progression in the human melanocytic system. Anticancer Res 9: 865–872PubMedGoogle Scholar
  28. Kefford RF, Salmon J, Shaw HM et al. (1991) Hereditary melanoma in Australia: variable association with dysplastic nevi and absence of genetic linkage to chromosome 1p. Cancer Genet Cytogenet 51: 45–55PubMedCrossRefGoogle Scholar
  29. Kelly JW, Crutcher WA, Sagebiel RW (1986) Clinical diagnosis of dysplastic melanocytic nevi. J Am Acad Dermatol 14: 1044–1052PubMedCrossRefGoogle Scholar
  30. Klein LJ, Barr RJ (1990) Histologic atypia in clinically benign nevi. J Am Acad Dermatol 22: 275–282PubMedCrossRefGoogle Scholar
  31. Kopf AW, Lindsay AC, Rogers GS et al. (1985) Relationship of melanocytic nevi to sun exposure in dysplastic nevus syndrome. J Am Acad Dermatol 12: 656–662PubMedCrossRefGoogle Scholar
  32. Kopf AW, Friedman RJ, Rigel DS (1990) Atypical mole syndrome. J Am Acad Dermatol 22: 117–118PubMedCrossRefGoogle Scholar
  33. Koprowski H, Herlyn M, Balaban G et al. (1985) Expression of the receptor for epidermal growth factor correlates with increased dosage of chromosome 7 in malignant melanoma. Somat Cell Mol Genet 11: 297–302PubMedCrossRefGoogle Scholar
  34. Kraemer KH, Tucker M, Tarone R et al. (1983) Cutaneous melanoma risk in dysplastic nevus syndrome types A and B. Lancet 11: 1076–1077CrossRefGoogle Scholar
  35. Lynch HT, Frichot BC, Lynch JF (1978) Familial atypical multiple mole melanoma syndrome. J Med Genet 15: 352–356PubMedCrossRefGoogle Scholar
  36. MacKie RM, English J, Aitchison TC et al. (1985) The number and distribution of benign pigmented moles (melanocytic naevi) in a healthy British population. Br J Dermatol 113: 167–174PubMedCrossRefGoogle Scholar
  37. MacKie RM, Freudenberger T, Aitchison TC (1989) Personal risk-factor chart for cutaneous melanoma. Lancet 11: 487–490CrossRefGoogle Scholar
  38. National Institutes of Health Consensus Development Conference Statement (1984) Precursors to malignant melanoma. J Am Acad Dermatol 10: 683–687CrossRefGoogle Scholar
  39. Olsen JH, Winther J, Brown PN (1990) Risk of nonocular cancer in first-degree relatives of retinoblastoma patients. Hum Genet 85: 283–287PubMedCrossRefGoogle Scholar
  40. Parmiter AH, Balaban G, Clark WH, Nowell PC (1988) Possible involvement of the chromosome region 10q 24–26 in early stages of melanocytic neoplasia. Cancer Genet Cytogenet 30: 313–317PubMedCrossRefGoogle Scholar
  41. Pedersen MI, Wang N (1989) Chromosomal evolution in the progression and metastasis of human malignant melanoma. A multiple lesion study. Cancer Genet Cytogenet 41: 185–201PubMedCrossRefGoogle Scholar
  42. Piepkorn M (1990) A hypothesis incorporating the histologic characteristics of dysplastic nevi into the normal biological development of melanocytic nevi. Arch Dermatol 126: 514–518PubMedCrossRefGoogle Scholar
  43. Piepkorn M, Meyer LJ, Goldgar D et al. (1989) The dysplastic nevus: a prevalent lesion that correlates poorly with clinical phenotype. J Am Acad Dermatol 20: 407–415PubMedCrossRefGoogle Scholar
  44. Roth ME, Grant-Kels JM, Ackerman AB et al. (1991) The histopathology of dysplastic nevi. Am J Dermatopathol 13: 38–51PubMedCrossRefGoogle Scholar
  45. Roush GC, Nordlund JJ, Forget B et al. (1988) Independence of dysplastic nevi from total nevi in determining risk for nonfamilial melanoma. Prey Med 17: 273–279CrossRefGoogle Scholar
  46. Sagebiel RW, Banda PW, Schneider JS, Crutcher WA (1985) Age distribution and histologic patterns of dysplastic nevi. J Am Acad Dermatol 13: 975–982PubMedCrossRefGoogle Scholar
  47. Sandberg AA (1990) Malignant melanoma. In: Sandberg AA (ed) The chromosomes in human cancer and leukemia, 2nd edn. Elsevier, New York, pp 917–923Google Scholar
  48. Schnyder UW (1966) Tumoren der Haut in genetischer Sicht. Praxis 6: 1478–1482Google Scholar
  49. Seetharam S, Waters HL, Seidman MM, Kraemer KH (1989) Ultraviolet mutagenesis in a plasmid vector replicated lymphoid cells from a patient with the melanoma-prone disorder dysplastic nevus syndrome. Cancer Res 49: 5918–5921PubMedGoogle Scholar
  50. Sigg C, Pelloni F, Schnyder UW (1989) Gehäufte Mehrfachmelanome bei sporadischem und familiärem dysplastischen Nävuszellnävus-Syndrom. Hautarzt 40: 548–552PubMedGoogle Scholar
  51. Sterry W, Christophers E (1988) Quadrant distribution of dysplastic nevus syndrome. Arch Dermatol 124: 926–929PubMedCrossRefGoogle Scholar
  52. Traboulsi EI, Zimmermann LE, Manz HJ (1989) Cutaneous malignant melanoma in survivors of heritable retinoblastoma. Arch Ophthalmol 106: 1059–1061CrossRefGoogle Scholar
  53. Traupe H, Macher E, Hamm H, Happle R (1989) Mutation rate estimates are not compatible with autosomal dominant inheritance of the dysplastic nevus syndrome. Am J Med Genet 32: 155–157PubMedCrossRefGoogle Scholar
  54. Trent JM, Stanbridge EJ, McBride HL et al. (1990) Tumorigenicity in human melanoma cell lines controlled by introduction of human chromosome 6. Science 247: 568–571PubMedCrossRefGoogle Scholar
  55. van Duinen SG, Ruiter DJ, Broecker EB et al. (1988) Level of HLA antigens in locoregional metastases and clinical course of the disease in patients with melanoma. Cancer Res 48: 1019–1025PubMedGoogle Scholar
  56. van’t Veer LJ, Burgering BM, Versteeg R et al. (1989) N-ras mutations in human cutaneous melanoma form sun-exposed body sites. Mol Cell Biol 9: 3114–3116Google Scholar
  57. Weinstock MA, Stryker WS, Stampfer MJ et al. (1991) Sunlight and dysplastic nevus risk. Results of a clinic-based case-control study. Cancer 67: 1701–1706PubMedCrossRefGoogle Scholar
  58. Wittbrodt J, Adam D, Malitschek B et al. (1989) Novel putative receptor tyrosine kinase encoded by the melanoma-inducing Tu locus in Xiphophorus. Nature 341: 415–421PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1993

Authors and Affiliations

  • J. Weiss
    • 1
  • C. Garbe
    • 2
  • P. Büttner
    • 3
  • E. G. Jung
    • 1
  1. 1.Department of DermatologyMannheim Medical SchoolMannheimFed. Rep. of Germany
  2. 2.Department of Dermatology, University Medical Center SteglitzFree University of BerlinBerlinFed. Rep. of Germany
  3. 3.Institute of Medical Statistics, University Medical Center SteglitzFree University of BerlinBerlinFed. Rep. of Germany

Personalised recommendations