Skip to main content

2D-Liquids and Solids in Strong Magnetic Fields

  • Conference paper
Low-Dimensional Electronic Systems

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 111))

Abstract

The competition between liquid and solid states of strongly correlated electron systems occurs in a novel way in a strong magnetic field. The occurrence of the incompressible states responsible for the fractional quantum Hall effect results in causes the liquid state to be reentrant with increasing magnetic field. A number of experimental anomolies have been observed near the Landau level filling factors where the transition is expected. We discuss the possibility of using dynamic probes of the electron system to provide conclusive evidence that these anomolies are associated with crossing the liquid-solid phase boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.P. Wigner, Phys. Rev. 46, 1002 (1934);

    Article  CAS  Google Scholar 

  2. Y. E. Losovik, and V.I. Yudson, Pis’ma Zh. Eksp. Teor. Fiz. 22, 26 (1975)

    Google Scholar 

  3. Y. E. Losovik, and V.I. Yudson, JETP Lett. 22, 11 (1975);

    Google Scholar 

  4. G. Meissner, H. Namaizawa, and M. Voss, Phys. Rev. B 13, 1370 (1976);

    Article  CAS  Google Scholar 

  5. L. Bonsall and A.A. Maradudin, Phys. Rev. B 15, 1959 (1977);

    Article  CAS  Google Scholar 

  6. B. Tanatar and D.M. Ceperley, Phys. Rev. B 39, 5005 (1989).

    Article  Google Scholar 

  7. For a recent theoretical estimate of the filling factor at which the transition should occur see K. Esfarjani and S.T. Chui, Phys. Rev. B 42, 10758 (1990) and work cited therein.

    Article  Google Scholar 

  8. K. von Klitzing, G. Dorda, and M. Pepper, Phys. Rev. B 45, 494 (1980).

    Article  Google Scholar 

  9. D.C. Tsui, H.L. Störmer, and A.C. Gossard, Phys. Rev. Lett. 48, 1559, (1982).

    Article  CAS  Google Scholar 

  10. For an elementary introduction see A Perspective on the Quantum Hall Effect, edited by A.H. MacDonald (Klewer, Boston, 1989).

    Google Scholar 

  11. R.B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).

    Article  Google Scholar 

  12. For a recent summary of experimentals which have been interpreted as providing evidence for a solid state of electrons see H.W. Jiang, H.L. Stormer, D.C. Tsui, L.N. Pfeiffer, and K.W. West, Phys. Rev. B 44, 8107 (1991).

    Article  Google Scholar 

  13. S.A. Trugman and S.A. Kivelson, Phys. Rev. B 31, 5280 (1985).

    Article  CAS  Google Scholar 

  14. This point is discussed in detail elsewhere. See A.11. MacDonald, Heiv. Phys. Acta., to appear (1992).

    Google Scholar 

  15. F.D.M. Haldane, Phys. Rev. Lett. 51, 605 (1983);

    Article  CAS  Google Scholar 

  16. B.I. Halperin, Phys. Rev. Lett. 52, 1583 (1983);

    Article  Google Scholar 

  17. N. D’Ambrumenil, and R. Morf, Phys. Rev. B 40, 6108 (1980).

    Article  Google Scholar 

  18. A.H. MacDonald, and S.M. Girvin, Phys. Rev. B 34, 5639 (1986). The quasiparticle energies here are the neutral quasiparticle energies in which the quasiparticles are created at fixed total electron number.

    Article  Google Scholar 

  19. D. Levesque, J.J. Weis, and A.H. MacDonald, Phys. Rev. B 30, 1056 (1984).

    Article  CAS  Google Scholar 

  20. The neutral excitation gap actually differs from L once quasiparticlequasihole interactions are taken into account. S.M. Girvin, A.H. MacDonald, and P.M. Platzman, Phys. Rev. B 33, 2481 (1986).

    Article  Google Scholar 

  21. For recent estimates of quasiparticle interactions see P. Beran, and R. Morf, Phys. Rev. B 40, 6108 (1980).

    Google Scholar 

  22. The implications of this property on the shape expected for the liquid solid phase boundary are discussed elsewhere. A.H. MacDonald, Phys. Rev. B, submitted for publication (1992).

    Google Scholar 

  23. R. Cote and A.H. MacDonald, Phys. Rev. B 44, 8759 (1991).

    Article  Google Scholar 

  24. H. Fukuyama, P.M. Platzman, and P.W. Anderson, Phys. Rev. B 19, 5211 (1979);

    Article  CAS  Google Scholar 

  25. Rolf R. Gerhardts, Phys. Rev. B 24, 1339 (1981);

    Article  CAS  Google Scholar 

  26. A.H. MacDonald, Phys. Rev. B 30, 4392 (1984).

    Article  Google Scholar 

  27. H.W. Jiang, R.L. Willett, H.L. Stormer, D.C. Tsui, L.N. Pfeiffer, and K.W. West, Phys. Rev. Lett. 65, 633 (1990);

    Article  CAS  Google Scholar 

  28. V.J. Goldman, M. Santos, M. Shayegan, and J.E. Cunningham, Phys. Rev. Lett. 66, 3285 (1990);

    Google Scholar 

  29. Y.P. Li, T. Sajoto, L. W. Engel, D.C. Tsui, and M. Shayegan, Phys. Rev. Lett. 67, 1930 (1991).

    Article  Google Scholar 

  30. F.I.B. Williams, P.A. Wright, R.G. Clark, E.Y. Andrei, G. Devill, D.C. Glattli, O. Probst, B. Etienne, C. Dorin, C.T. Foxon, and J.J. Harris, Phys. Rev. Lett. 66, 3285 (1991).

    Article  CAS  Google Scholar 

  31. There are indications that this does occur. See M. Besson, E. Gornik, C.M. Engelhardt, and G. Weimann, preprint (1992).

    Google Scholar 

  32. M.A. Paalanen, R.L. Willett, R.R. Ruel, K.W. West, L.N. Pfeiffer, D.J. Bishop, and P.B. Littlewood, preprint (1991).

    Google Scholar 

  33. B.G.A. Normand, P.B. Littlewood, and A.J. Millis, preprint (1992).

    Google Scholar 

  34. D. Heiman, B.B. Goldberg, A. Pinczuk, A.C. Gossard, and J.H. English, Phys. Rev. Lett. 61, 605 (1988);

    Article  CAS  Google Scholar 

  35. B.B. Goldberg, D. Reiman, A. Pinczuk, L. Pfeiffer, and K. West, Phys. Rev. Lett. 65, 641 (1990);

    Article  CAS  Google Scholar 

  36. H. Buhman, W. Joss, K. von Klitzing, I.V. Kukushin, G. Martinez, A.S. Plaut, K. Ploog, and V. B. Timofeev, Phys. Rev. Lett. 65, 1056 (1990);

    Article  Google Scholar 

  37. A.J. Tuberfield, R. S. Haynes, P.A. Wright, R.A. Ford, R.G. Clark, J.F. Ryan, J.J. Harris, and C.T. Faxon, Phys. Rev. Lett. 65, 637 (1990);

    Article  Google Scholar 

  38. H. Buhmann, W. Joss, K. V.Klitzing, I.V. Kukushkin, A.S. Plant, G. Martinez, K. Ploog, and V.B. Timofeev, Phys. Rev. Lett. 66, 926 (1991).

    Article  CAS  Google Scholar 

  39. A.H. MacDonald, and E.H. Rezayi, Phys. Rev. B, 42, 3224 (1990);

    Article  Google Scholar 

  40. A.B. Dzyubenko, and Yu. E. Lozovik, J. Phys. A 24, 415 (1991);

    Article  Google Scholar 

  41. V.M. Apalkov and E.I. Rashba, preprint (1992).

    Google Scholar 

  42. A.H. MacDonald and E.H. Rezayi, Phys. Rev. Lett., to appear (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

MacDonald, A.H. (1992). 2D-Liquids and Solids in Strong Magnetic Fields. In: Bauer, G., Kuchar, F., Heinrich, H. (eds) Low-Dimensional Electronic Systems. Springer Series in Solid-State Sciences, vol 111. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84857-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84857-5_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84859-9

  • Online ISBN: 978-3-642-84857-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics