Skip to main content

The Physical Consequences of Wave Breaking in Deep Water

  • Conference paper

Summary

The evolving technology of remote sensing and the increasing interest in the distribution of anthropogenic gases have, in recent years, focused attention on the ocean surface. In particular, the complex process of wave breaking has a wide range of consequences for remote sensing, momentum, heat and mass transfer and oceanic acoustics. In this paper we consider some of the more important effects of wave breaking that have recently been subjected to intensive observational scrutiny. These include: changes in microwave reflectivity; stress and gas transfer enhancement; formation of bubble clouds and sound generation; dissipation of surface waves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banner, M.L. and Fooks, E.H. 1985 On the microwave reflectivity of small-scale breaking water waves. Proc. R. Soc. Lond. A 399, 93–109.

    Article  ADS  Google Scholar 

  2. Banner, M.L. 1990a The influence of wave breaking on the surface pressure distribution in wind wave interactions. J. Fluid Mech. 211, 463–495.

    Article  ADS  Google Scholar 

  3. Banner, M.L. 1990b On the influence of the sea state on the wind stress. Internat. TOGA Scient. Conf. Proc. July 1990, WCRP-43 (WMO/TD-No. 379), Hawaii, 139–144.

    Google Scholar 

  4. Banner, M.L. 1990c Equilibrium spectra of wind waves. J. Phys. Oceanogr. 20, 966–984.

    Article  ADS  Google Scholar 

  5. Banner, M.L. and Wilkinson, D.W. 1991 Breaking wave enhancement of the sensible heat flux at an air-water interface (in progress).

    Google Scholar 

  6. Bortkovskii, R.S., 1987 Air-Sea Exchange of Heat and Moisture during Storms. Reidel, Dordrecht.

    Google Scholar 

  7. DeCosmo, J., Katsaros, K.B. and Lind, R.J. 1988 Surface Layer Measurements During HEXMAX by the University of Washington. Tech. Rpt. (Hexos Contr. #16) Eds. Oost, W.A., Smith, S.D. and Katsaros, K.B., Dept. Atmos. Sci., Uni. of Washington, 29–39..

    Google Scholar 

  8. Donelan, M.A., 1979 On the fraction of wind momentum retained by waves. In Marine Forecasting, Predictability and Modelling in Ocean Hydrodynamics. J.C. Nihoul, ed. Elsevier, Amsterdam.

    Google Scholar 

  9. Donelan, M.A. 1982 The dependence of the aerodynamic drag coefficient on wave parameters. In the First International Conference on Meteorology and Air-Sea Interaction of the Coastal Zone. 381–387, American. Met. Soc., Boston.

    Google Scholar 

  10. Donelan, M.A. 1987 The effect of swell on the growth of wind waves. Johns Hopkins APL Technical Digest 8, 1, 18–23.

    Google Scholar 

  11. Donelan, A.A. and Kahma, K.K. 1987 Observations of velocities beneath wind driven waves. Proc. Int’l. Workshop on Wave Hindcasting and Forecasting, Halifax, N.S. Sept. 23–26, 1986. Env. Studies Rev. Fund, Ottawa, 243–252.

    Google Scholar 

  12. Donelan, M.A. 1990 Air-Sea Interaction. The Sea: Vol.9, 239–292. J. Wiley & Sons, Inc.

    Google Scholar 

  13. Donelan, M.A. and W.J. Pierson, 1987 Radar scattering and equilibrium ranges in wind-generated waves with application to scatterometry. J. Geophys. Res., 92 (C5), 4971–5029.

    Article  ADS  Google Scholar 

  14. Drennan, W.J., K.K. Kahma, E.A. Terray, M.A. Donelan, and S.A. Kitaigorodskii, 1991. Observations of the enhancement of kinetic energy dissipation beneath breaking wind waves. Proc. IUTAM Breaking Waves Symposium, Sydney, Australia, July, 1991.

    Google Scholar 

  15. Duncan, J.H. 1981 An experimental investigation of breaking waves produced by a towed hydrofoil. Proc. R. Soc. Lond. A 377, 331–348.

    ADS  Google Scholar 

  16. Duncan, J.H. 1983 The breaking and non-breaking wave resistance of a two-dimensional hydrofoil. J. Fluid. Mech. 126, 507–520.

    Article  ADS  Google Scholar 

  17. Gastel, K. van, P.A.E.M. Janssen and G.J. Komen 1985 On phase velocity and growth rate of wind-induced gravity-capillary waves. J. Fluid Mech., 161, 199–216.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Geernaert, G.L., Katsaros, K.B. and Richter, K. 1986 Variation of the drag coefficient and its dependence on sea state. J. Geophys. Res. 91, 7667–7679.

    Article  ADS  Google Scholar 

  19. Hasselmann, K., T.P. Barnett, E. Bouws, H. Carlson, D.E. Cartwright, K. Enke, J.A. Ewing, H. Gienapp, D.E. Hasselmann, P. Kruseman, A. Meerburg, P. Muller, D.J. Olbers, K. Richter, W. Sell, and H. Waiden, 1973 Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Deut. Hydrogr. Z., Suppl. A, 8 (12).

    Google Scholar 

  20. Jahne, B., Munnich, K.O., Bosinger, R., Dutzi, A., Huber, W. and Libner, P. 1987 On the parameters influencing air-water gas exchange. J. Geophys. Res. 92, 1937–1949.

    Article  ADS  Google Scholar 

  21. Jahne, B., and K.S. Riemer, 1990. Two dimensional wavenumber spectra of small-scale water surface waves. J. Geophys. Res. 95, C7, 11531–11546.

    Article  ADS  Google Scholar 

  22. Janssen, P.A.E.M. 1989 Wave-induced stress and the drag of air flow over sea waves. J. Phys. Oceanogr. 19, 745–754.

    Article  ADS  Google Scholar 

  23. Jessup, A.T., Keller, W.C. and Melville, W.K. 1990 Measurements of sea spikes in microwave backscatter at moderate incidence. J. Geophys. Res. 95, 9679–9688.

    Article  ADS  Google Scholar 

  24. Jones, I.S.F., 1985 Turbulence below wind waves. In the Ocean Surface — Wave Breaking, Turbulent Mixing and Radio Probing. Reidel, Dordrecht, 437–442.

    Google Scholar 

  25. Kahma, K.K., and M.A. Donelan 1988. A laboratory study of the minimum wind speed for wind wave generation. J. Fluid Mech., 192, 332–364.

    Article  ADS  Google Scholar 

  26. Kawai, S. 1979 Generation of initial wavelets by instability of a coupled shear flow and their evolution to wind waves. J. Fluid. Mech., 9, 661–703.

    Article  ADS  Google Scholar 

  27. Kawai, S. 1981 Visualisation of airflow separation over wind wave crests under moderate wind. Boundary Layer Met. 21, 93–104.

    Article  ADS  Google Scholar 

  28. Kawai, S. 1982 Structure of the air flow over wind wave crests revealed by flow visualisation techniques. Boundary-Layer Met. 23, 503–521.

    Article  ADS  Google Scholar 

  29. Kerman, B.R. 1988 (Ed.) Sea Surface Sound — Natural Mechanisms of Surface Generated Noise in the Ocean. Kluwer, Dordrecht, 639 pp.

    Google Scholar 

  30. Kerman, B.R. 1991 (Ed.) “Natural Physical Sources of Underwater Sound”. Kluwer, Dordrecht (in Press).

    Google Scholar 

  31. Kitaigorodskii, S.A., 1970. The physics of air-sea interaction. Israel Program for Scientific Translations, Jerusalem. Translation dated 1973.

    Google Scholar 

  32. Kitaigorodskii, S.A., 1983. On the theory of the equilibrium range in the spectrum of wind generated gravity waves. J. Phys. Oceanogr., 13, 816–827.

    Article  ADS  Google Scholar 

  33. Kitaigorodskii, S.A., M.A. Donelan, J.L. Lumley, and E.A. Terray. 1983 Wave-turbulence interactions in the upper ocean. Part II: Statistical characteristics of wave and turbulence components of the random velocity field in the marine surface layer. J. Phys. Oceanogr., 13, 1988–1999.

    Article  ADS  Google Scholar 

  34. Lake, B.M. and Yuen, H.C. 1978 A new model for nonlinear wind waves. Part 1. Physical model and experimental evidence. J. Fluid Mech. 88, 33–62.

    Article  ADS  MATH  Google Scholar 

  35. Liss, P.S., 1973 Processes of gas exchange across an air-water interface. Deep Sea Research, 20, 221–238.

    Google Scholar 

  36. Longuet-Higgins, M.S. 1987 A stochastic model of sea surface roughness. I: wave crests. Proc. R. Soc. Lond. A 410, 19–34.

    Article  ADS  MATH  Google Scholar 

  37. Okuda, K., Kawai, K. and Toba, Y. 1977 Measurements of the skin friction distribution along the surface of wind waves. J. Oceanogr. Soc. Japan, 33, 190–198.

    Article  Google Scholar 

  38. Okuda, K. 1982 Internal flow structure of short wind waves I. On the internal vorticity structure. J. Oceanogr. Soc. Japan, 38, 28–42.

    Article  Google Scholar 

  39. Phillips, O.M., 1957. On the generation of waves by turbulent wind. J. Fluid. Mech., 2, 417–495.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. Phillips, O.M. 1985 Spectral and statistical properties of the equilibrium range in wind-generated gravity waves. J. Fluid Mech. 156, 505–531.

    Article  ADS  MATH  Google Scholar 

  41. Phillips, O.M. 1988 Radar returns from the sea surface-Bragg scattering and breaking waves. J. Phys. Oceanogr. 18, 1065–1074.

    Article  ADS  Google Scholar 

  42. Phillips, O.M. and Banner, M.L. 1974 Wave breaking in the presence of wind drift and swell. J. Fluid Mech. 66, 625–640.

    Article  ADS  MATH  Google Scholar 

  43. Plant, W.J. and Keller, W.C. 1990 Evidence of Bragg scattering in microwave doppler spectra. J. Geophys. Res. 95, 16299–16310.

    Article  ADS  Google Scholar 

  44. Plant, W.J., 1991 Wave influences on wind profiles over water. J. Phys. Oceanogr., (in press).

    Google Scholar 

  45. Pumphrey, H.C. and Ffowcs Williams, J. 1990 Bubbles as sources of ambient noise. IEEE J. Ocean Eng. 15, 268–274.

    Article  Google Scholar 

  46. Rapp, R.J. and Melville, W.K. 1990 Laboratory measurements of deep water breaking waves. Phil. Trans. R. Soc. Lond. A 331, 735–780.

    Article  ADS  Google Scholar 

  47. Smith, S.D. and Anderson, R.J. 1988 Bedford Institute of Oceanography Eddy Flux Measurements During HEXMAX, Tech. Rpt. (Hexos Contr. 16 ) Eds. Oost, W.A., Smith, S.D. and Katsaros, K.B., Dept. Atmos. Sci., Uni. of Washington, 14–21.

    Google Scholar 

  48. Soloviev, A.V., N.V. Vershinsky and V.A. Bezverchnii, 1988. Small-scale turbulence measurements in the thin surface layer of the ocean. Deep Sea Res. 35, 1859–1874.

    Article  Google Scholar 

  49. Su, M-Y. and Green, A.W. 1986 Experimental studies of strong nonlinear interactions of deep-water gravity waves. In Wave Dynamics and Radio Probing of the Sea Surface, Eds. O.M. Phillips and K. Hasselmann, Plenum Press, N.Y., 231–253.

    Google Scholar 

  50. Toba, Y., Iida, I., Kawamura, H., Ebuchi, N. and Jones, I.S.F. 1990 The wave dependence of the sea surface wind stress. J. Phys. Oceanogr. 20, 705–721.

    Article  ADS  Google Scholar 

  51. Trulsen, K. and Dysthe, K. 1990 Frequency downshift through self-modulation and breaking. In “Water Wave Kinematics”, Eds. A. Torum and O.T. Gudmestad, Kluwer Academic, Dordrecht.

    Google Scholar 

  52. Valenzuela, G.R., 1976. The growth of gravity-capillary waves in a coupled shear flow. J. Fluid.Mech., 76, 229–250.

    Article  ADS  MATH  Google Scholar 

  53. Wright, J.W. 1976 The wind drift and wave breaking. J. Phys. Oceanogr. 6, 404–405.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Banner, M.L., Donelan, M.A. (1992). The Physical Consequences of Wave Breaking in Deep Water. In: Banner, M.L., Grimshaw, R.H.J. (eds) Breaking Waves. International Union of Theoretical and Applied Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84847-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84847-6_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84849-0

  • Online ISBN: 978-3-642-84847-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics