A Continuum Damage Model for the Description of High Strain Rate Deformations

  • O. T. Bruhns
Conference paper
Part of the International Union of Theoretical and Applied Mechanics book series (IUTAM)


The behaviour of metals under dynamic loading is described by introducing a continuum damage theory, which is also valid for nonisothermal processes. Microstructural changes are modelled by internal variables, e.g. damage due to shear bands is described with a second order tensor. Dislocation induced viscoplastic deformations are modelled using a flow rule of the overstress-type.


Shear Band Representative Volume Element Flow Rule Material Tensor Shear Band Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bruhns, O.T. and Diehl, H.; An Internal Variable Theory of Inelastic Behaviour at High Rates of Strain“, Arch. Mech. 41 (1989), 427–460MATHGoogle Scholar
  2. 2.
    Diehl, H.; Ein Materialmodell zur Berechnung von Hochgeschwindigkeitsdeformationen metallischer Werkstoffe unter besonderer Berücksichtigung der Schädigung durch Scherbänder, Report No. 66, Institute of Mechanics, RU Bochum 1989Google Scholar
  3. 3.
    Fornefeld, W.; Zur Parameteridentifikation und Berechnung von Hochgeschwindigkeitsdeformationen metallischer Werkstoffe anhand eines Kontinuums-Damage -Modells, Report No. 73, Institute of Mechanics, RU Bochum 1990Google Scholar
  4. 4.
    Bruhns, O.T.; Shear Band Formation in Impact Problems, in Wriggers, P. and Wagner, W. (eds.), Nonlinear Computational Mechanics, Springer 1991Google Scholar
  5. 5.
    Lehmann, T., The Constitutive Law in Thermoplasticity, CISM Courses and Lectures No. 281, Springer-Verlag 1984Google Scholar
  6. 6.
    Dafalias, Y.N.; The Plastic Spin Concept and a Simple Illustration of its Role in Finite Plastic Transformations, Mech. Materials 3 (1984), 223–233Google Scholar
  7. 7.
    Dafalias, Y.N.; The Plastic Spin, J. Appl. Mech. 52 (1985), 865–871CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Mandel, J.; Plasticité classique et viscoplasticité, CISM Courses and Lectures No. 97, Springer-Verlag 1971Google Scholar
  9. 9.
    Perzyna, P. and Wojno, W.; Unified Constitutive Equations for Elastic-Viscoplastic Material, Bull. Acad. Polon. Sci., Sér. Sci. Techn. 24 (1976), 85–94Google Scholar
  10. 10.
    Chaboche, J.L.; Constitutive Equations for Cyclic Plasticity and Cyclic Viscoplasticity, Int. J. Plasticity S (1989), 247–302Google Scholar
  11. 11.
    Dvorak, G.J.; Mechanical Properties of Composites, in Boehler, J.P. (ed.), Mechanical Behaviour of Anisotropic Solids, M. Nijhoff Publ. 1982Google Scholar
  12. 12.
    Kosinski, W.; Thermal Waves in Inelastic Bodies, Arch. Mech. 27 (1975), 733–748MATHMathSciNetGoogle Scholar
  13. 13.
    Rechenberg, I.; Evolutionsstrategie, Stuttgart: F. Frommann Verlag 1973Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • O. T. Bruhns
    • 1
  1. 1.Lehrstuhl für Mechanik IRuhr-Universität BochumBochumGermany

Personalised recommendations