Advertisement

Symmetry Breaking in a Quantum Double-Well Chain

  • J. E. Gubernatis
  • D. K. Campbell
  • Xidi Wang
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 70)

Abstract

We present numerical evidence that quantum fluctuations can produce a symmetric ground-state in the double-well chain, restoring the symmetry that is broken classically. In particular, we present the phase diagram for this model that shows the symmetry restoration occurs more easily than predicted by a perturbation theory calculation of the continuum limit of the model.

Keywords

Continuum Limit Alamos National Laboratory Quantum Fluctuation Hydrogen Halide Quantum Monte Carlo Simulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Fradkin and J. E. Hirsch, Phys. Rev B 27, 1680 (1982);CrossRefADSGoogle Scholar
  2. J. E. Hirsch and E. Fradkin, Phys. Rev. B 27, 4032 (1983).Google Scholar
  3. 2.
    R. Dashen, B. Hasslacher, and A. Neveu, Phy. Rev. D 10, 4114, 4139 (1974).ADSGoogle Scholar
  4. 3.
    For example, R. W. Jansen, R. Bertoncini, D. A. Pinnick, A. I. Katz, R. C. Hanson, O. F. Sankey and M. O’Keeffe, Phys. Rev. B 35, 9830 (1987).CrossRefADSGoogle Scholar
  5. 4.
    R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals ( McGraw-Hill, New York, 1965 ).MATHGoogle Scholar
  6. 5.
    M. Creutz and B. Freedman, Ann. Phys. 132, 427 (1981).CrossRefADSMathSciNetGoogle Scholar
  7. 6.
    A. Milchev, D. W. Heermann and K. Binder, J. Stat. Phys. 44, 749 (1986).CrossRefADSGoogle Scholar
  8. 7.
    R. Toral and A. Chakrabari, Phys. Rev. B 42, 2445 (1990).CrossRefADSGoogle Scholar
  9. 8.
    S. Duane, A. D. Kennedy, B. J. Pendelton, and D. Roweth, Phys. Lett. B 195, 216 (1987).CrossRefADSGoogle Scholar
  10. 9.
    K. Binder, in Applications of the Monte Carlo Method to Statistical Physics,edited by K. Binder (Springer-Verlag, Berlin, 1984), Chap. 1.Google Scholar
  11. 10.
    A. M. Ferrenberg and R. Swendsen, Phys. Rev. Lett. 61, 2635 (1988);CrossRefADSGoogle Scholar
  12. A. M. Ferrenberg and R. Swendsen, Phys. Rev. Lett. 63, 1195 (1989).CrossRefADSGoogle Scholar
  13. 11.
    Xidi Wang, D. K. Campbell, J. E. Gubernatis, “Symmmetry breaking in a quantum double-well chain,” unpublished.Google Scholar
  14. 12.
    Rajiv R. P. Singh and G. A. Baker, Jr., Phys. Rev. Lett. 61, 1 (1991).CrossRefADSMathSciNetGoogle Scholar
  15. 13.
    Xidi Wang, D. K. Campbell, G. A. Baker, Jr., and J. E. Gubernatis, “Conformal charge of the two-dimensional ø4field theory,” unpublished.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • J. E. Gubernatis
    • 1
  • D. K. Campbell
    • 2
  • Xidi Wang
    • 2
  1. 1.Theoretical DivisionLos Alamos National LaboratoryLos AlamosUSA
  2. 2.Center for Nonlinear StudiesLos Alamos National LaboratoryLos AlamosUSA

Personalised recommendations