Skip to main content

Three “Universal” Mesoscopic Josephson Effects

  • Conference paper

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 109))

Abstract

A recent theory is reviewed for the sample-to-sample fluctuations in the critical current of a Josephson junction consisting of a disordered point contact or microbridge. The theory is based on a relation between the super-current and the scattering matrix in the normal state. The root-mean-square amplitude rms I c of the critical current I c at zero temperature is given by rms I c eΔ0/ℏ, up to a numerical coefficient of order unity (eΔ0 is the energy gap). This is the superconducting analogue of “Universal Conductance Fluctuations” in the normal state. The theory can also be applied to a ballistic point contact, where it yields the analogue of the quantized conductance, and to a quantum dot, where it describes supercurrent resonances. All three phenomena provide a measurement of the supercurrent unit eΔ0/ℏ, and are “universal” through the absence of a dependence on junction parameters.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. W. J. Beenakker and H. van Houten, Phys. Rev. Lett. 66, 3056 (1991).

    Article  Google Scholar 

  2. L. I. Glazman and K. A. Matveev, Pis’ma Zh. Eksp. Teor. Fiz. 49, 570 (1989) [JETP Lett. 49, 659 (1989)].

    Google Scholar 

  3. C W. J. Beenakker and H. van Houten, in: Proc. 4th Int. Conf. on Superconducting and Quantum Effect Devices and their Applications (SQUID’91), ed. by H. Koch and H. Lübbig (Springer, Berlin, to be published).

    Google Scholar 

  4. C. W. J. Beenakker, Phys. Rev. Lett. 67, 3836 (1991); Erratum (ibidem, to be published). The assertion made in this Ref. (directly above Eq. 16) that T p ≪ 1 for lL is incorrect (see Sec. 5.3 of the present paper).

    Article  Google Scholar 

  5. B. J. van Wees, H. van Houten, C. W. J. Beenakker, J. G. Williamson, L. P. Kouwenhoven, D. van der Marel, and C. T. Foxon, Phys. Rev. Lett. 60, 848 (1988).

    Article  Google Scholar 

  6. D. A. Wharam, T. J. Thornton, R. Newbury, M. Pepper, H. Ahmed, J. E. F. Frost, D. G. Hasko, D. C. Peacock, D. A. Ritchie, and G. A. C. Jones, J. Phys. C 21, L209 (1988).

    Article  Google Scholar 

  7. A review of quantum transport in semiconductor nanostructures is: C. W. J. Beenakker and H. van Houten, Solid State Phys. 44, 1 (1991).

    Article  Google Scholar 

  8. A. Furusaki, H. Takayanagi, and M. Tsukada, Phys. Rev. Lett. 67, 132 (1991); Phys. Rev. B (to be published).

    Article  Google Scholar 

  9. B. L. Al’tshuler, Pis’ma Zh. Eksp. Teor. Fiz. 41, 530 (1985) [JETP Lett. 41, 648 (1985)].

    Google Scholar 

  10. P. A. Lee and A. D. Stone, Phys. Rev. Lett. 55, 1622 (1985).

    Article  CAS  Google Scholar 

  11. A review of mesoscopic fluctuation phenomena is: B. L. Al’tshuler, P. A. Lee, and R. A. Webb, eds., Mesoscopic Phenomena in Solids (North-Holland, Amsterdam, 1991).

    Google Scholar 

  12. B. L. Al’tshuler and B. Z. Spivak, Zh. Eksp. Teor. Fiz. 92, 609 (1987) [Sov. Phys. JETP 65, 343 (1987)].

    Google Scholar 

  13. C. W. J. Beenakker and H. van Houten, in: Nanostructures and Mesoscopic Systems, ed. by W. P. Kirk and M. A. Reed (Academic, New York, to be published).

    Google Scholar 

  14. A. Furusaki and M. Tsukada, Solid State Comm. 78, 299 (1991).

    Article  Google Scholar 

  15. B. J. van Wees, K.-M. H. Lenssen, and C. J. P. M. Harmans, Phys. Rev. B 44, 470 (1991).

    Article  Google Scholar 

  16. P. G. de Gennes, Superconductivity of Metals and Alloys (Benjamin, New York, 1966).

    Google Scholar 

  17. K. K. Likharev, Rev. Mod. Phys. 51, 101 (1979).

    Article  Google Scholar 

  18. M. Yu. Kupriyanov and V. F. Lukichev, Fiz. Nizk. Temp. 8, 1045 (1982) [Sov. J. Low Temp. Phys. 8, 526 (1982)]; A. A. Zubkov and M. Yu. Kupriyanov, Fiz. Nizk. Temp. 9, 548 (1983) [Sov. J. Low Temp. Phys. 9, 279 (1983)].

    Google Scholar 

  19. J. Bardeen, R. Kümmel, A. E. Jacobs, and L. Tewordt, Phys. Rev. 187, 556 (1969).

    Article  Google Scholar 

  20. A. F. Andreev, Zh. Eksp. Teor. Fiz. 46,1823 (1964); 49, 655 (1965) [Sov. Phys. JETP 19, 1228 (1964); 22, 455 (1966)].

    CAS  Google Scholar 

  21. E. Akkermans, A. Auerbach, J. E. Avron, and B. Shapiro, Phys. Rev. Lett. 66, 76 (1991).

    Article  Google Scholar 

  22. A. D. Stone and Y. Imry, Phys. Rev. Lett. 56, 189 (1986).

    Article  CAS  Google Scholar 

  23. Y. Imry, in: Directions in Condensed Matter Physics, Vol. 1, ed. by G. Grinstein and G. Mazenko (World Scientific, Singapore, 1986).

    Google Scholar 

  24. W. Haberkorn, H. Knauer, and J. Richter, Phys. Status Solidi A 47, K161 (1978).

    Article  Google Scholar 

  25. A. V. Zaĭtsev, Zh. Eksp. Teor. Fiz. 86, 1742 (1984) [Sov. Phys. JETP 59, 1015 (1984)].

    Google Scholar 

  26. G. B. Arnold, J. Low Temp. Phys. 59, 143 (1985).

    Article  CAS  Google Scholar 

  27. A. Furusaki and M. Tsukada, Physica B 165M&166, 967 (1990).

    Article  Google Scholar 

  28. D. S. Fisher and P. A. Lee, Phys. Rev. B 23, 6851 (1981).

    Article  CAS  Google Scholar 

  29. I. O. Kulik and A. N. Omel’yanchuk, Fiz. Nizk. Temp. 3, 945 (1977); 4, 296. (1978) [Sov. J. Low Temp. Phys. 3, 459 (1977); 4, 142 (1978)].

    Google Scholar 

  30. L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Pergamon, Oxford, 1977).

    Google Scholar 

  31. M. Büttiker, IBM J. Res. Dev. 32, 63 (1988).

    Article  Google Scholar 

  32. V. Kalmeyer and R. B. Laughlin, Phys. Rev. B 35, 9805 (1987).

    Article  Google Scholar 

  33. W. Xue and P. A. Lee, Phys. Rev. B 38, 3913 (1988).

    Article  Google Scholar 

  34. A. D. Stone, P. A. Mello, K. A. Muttalib, and J.-L. Pichard, in Ref. [11].

    Google Scholar 

  35. I. O. Kulik and A. N. Omel’yanchuk, Pis’ma Zh. Eksp. Teor. Fiz. 21, 216 (1975) [JETP Lett. 21, 96 (1975)].

    Google Scholar 

  36. V. Ambegaokar and A. Baratoff, Phys. Rev. Lett. 10, 486 (1963); 11, 104(E) (1963).

    Article  Google Scholar 

  37. Y. Imry, Europhys. Lett. 1, 249 (1986).

    Article  CAS  Google Scholar 

  38. H. Takayanagi and T. Kawakami, Phys. Rev. Lett. 54, 2449 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Beenakker, C.W.J. (1992). Three “Universal” Mesoscopic Josephson Effects. In: Fukuyama, H., Ando, T. (eds) Transport Phenomena in Mesoscopic Systems. Springer Series in Solid-State Sciences, vol 109. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84818-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84818-6_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84820-9

  • Online ISBN: 978-3-642-84818-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics