Advertisement

Shape Dependence of Ballistic Transport in Mesoscopic Systems

  • A. Okiji
  • H. Kasai
Conference paper
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 109)

Abstract

Shape dependence of ballistic transport is investigated in mesoscopic systems within the framework of single electron approximation. In the quasi-one-dimensional quantum wire with a wide or a bent part, there appears inter-channel coupling which produces various pattern behaviours in the conductance. In the quantum wire with a small ring geometry, the inter-channel coupling leads to the periodic behaviour of the conductance as a function of the magnetic field, in addition to the oscillation originating from the intra-channel coupling. In the system of semi-infinite two-dimensional region with two quantum wires as an injector and a collector of electrons, the pattern behaviour of the observed electron focusing spectra can be explained qualitatively by the wavelike nature of the electron.

Keywords

Fermi Energy Pattern Behaviour Transmission Probability Wide Part Quantum Wire 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. J. van Wees, H. van Houten, C. W. J. Beenakker, J. G. Williamson, L. P. Kouwenhoven, D. van der Marel and C. T. Foxon, Phys. Rev. Lett. 60 (1988) 848.CrossRefGoogle Scholar
  2. 2.
    D. A. Wharam, T. J. Thornton, R. Newburg, M. Pepper, H. Ahmed, J. E. F. Frost, D. G. Hasko, D. C. Peacock, D. A. Ritchie and G. A. C. Jones, J.Phys.C 21 (1988) L209.CrossRefGoogle Scholar
  3. 3.
    R. Landauer, Philos. Mag. 21 (1970) 863.CrossRefGoogle Scholar
  4. 4.
    A. Nakamura and A. Okiji, J. Phys. Soc. Jpn. 60 (1991) 1873.Google Scholar
  5. 5.
    A. Okiji, H. Kasai and A. Nakamura, Prog. Theor. Phys. Suppl. (1992) in pressGoogle Scholar
  6. 6.
    H. Kasai, K. Mitsutake and A. Okiji, J. Phys. Soc. Jpn. 60 (1991) 1679.CrossRefGoogle Scholar
  7. 7.
    K. Vacek, H. Kasai and A. Okiji, J. Phys. Soc. Jpn. 61 (1992) No.1Google Scholar
  8. 8.
    A. Okiji, H. Kasai and K. Mitsutake, submitted to J. Phys. Soc. Jpn.Google Scholar
  9. 9.
    A. Nakamura, Y. Maki and A. Okiji, J. Phys. Soc. Jpn. 60 (1991) 749.CrossRefGoogle Scholar
  10. 10.
    A. Okiji, N. Negishi and A. Nakamura, submitted to J. Phys. Soc. Jpn.Google Scholar
  11. 11.
    H. van Houten, B. J. van Wees, J. E. Mooij, C. W. Beenakker, J. G. Williamson and C. T. Foxon, Europhys. Lett. 5 (1988) 721.CrossRefGoogle Scholar
  12. 12.
    H. van Houten, C. W. Beenakker, J. G. Williamson, M. E. I. Broekaart, P. H. M. van Loosdrecht, B. J. van Wees, J. E. Mooij, C. T. Foxon and J. J. Harris, Phys. Rev. B39 (1989) 8556.Google Scholar
  13. 13.
    F. Soles and M. Macucci, Phys. Rev. B41 (1990) 10354.Google Scholar
  14. 14.
    R. L. Schult, D. G. Ravenhall and H. W. Wyld, Phys. Rev. B39 (1989) 5476.Google Scholar
  15. 15.
    Y. Aharonov and D. Bohm, Phys. Rev. 115 (1959) 485.CrossRefGoogle Scholar
  16. 16.
    Y. Gefen, Y. Imry and M. Ya. Azbel, Phys. Rev. Lett. 52 (1984) 129.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • A. Okiji
    • 1
  • H. Kasai
    • 1
  1. 1.Department of Applied PhysicsOsaka UniversityJapan

Personalised recommendations