Low Temperature PECVD Growth and Characterization of a-SiC:H Films Deposited from Silacyclobutane and Silane/Methane Precursor Gases

  • M. J. Loboda
Part of the Springer Proceedings in Physics book series (SPPHY, volume 71)


Research at Dow Corning includes the development of a-SiC:H films as protective coatings for electronics applications where the deposition temperature cannot exceed 250 °C. Results from a detailed study comparing a-SiC:H films deposited by electron cyclotron resonance (ECR) PECVD at 175 °C substrate temperature are presented. Two source gases were used: silacyclobutane, an organosilicon material produced in our laboratories, and a silane/methane mixture. Deposition properties, film structure and atomic composition have been characterized by ellipsometry, profilometry, internal reflection infrared spectroscopy, micro-Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and Rutherford Backscattering/Hydrogen Forward Scattering spectrometry (RBS/HFS). The low temperature growth process on silicon substrates results in a-SiC:H films that are under compressive stress. All samples had a typical hydrogen content of 50 atomic percent and the average carbon/silicon ratio varied from 1.0–1.9. The silacyclobutane precursor gave higher film growth rates and higher carbon concentrations, while more oxygen is observed in the films deposited from the silane/methane mixture. XPS and Raman data show silicon carbide-like bonding and amorphous carbon/DLC bonding, respectively. The results indicate that the precursor molecular structure can be correlated with different film growth properties and composition, and also that the process conditions can influence film properties to a similar degree.


Plasma Enhance Chemical Vapor Deposition Electron Cyclotron Resonance Film Stress High Carbon Concentration Wafer Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Y. Catherine, G. Turban, Thin Solid Films. 60 (1979), p. 193–200CrossRefADSGoogle Scholar
  2. [2]
    Y. Katayama, T. Shimada, K. Usami, S. Ishioka, J. Journal of Appl. Phys., 19 (1980), Suppliment 19-2, p. 115–118Google Scholar
  3. [3]
    H. Wieder, M. Cardona, C. Guarnieri, Phys. Stat. Sol. (B), 92 (1979), p. 99–112CrossRefADSGoogle Scholar
  4. [4]
    M. Rahman, C. Yang, D. Sugiarto, A.S. Byrne, M. Ju, K. Tran, K. Lui, T. Asano, W. Stickle, J. Appl. Phys., 67 (1990), p. 7065–7070CrossRefADSGoogle Scholar
  5. [5]
    W. J. Lu, A.J. Steckl, T.P. Chow, W. Katz, J. Electrochem. Soc., 131 (1984), p. 1907–1914CrossRefGoogle Scholar
  6. [6]
    M.A. Bayne, Z. Kurokawa, N.U. Okorie, B.D. Poe, L. Johnson, R.W. Moss, Thin Solid Films, 107 (1983), p. 201–206CrossRefADSGoogle Scholar
  7. [7]
    J. Eldridge, J. Moore, G. Olive, V. Dunton. J. Electrochem. Soc., 137 (1990), p. 2266–2271CrossRefGoogle Scholar
  8. [8]
    J. Gerault, R. Morancho, G. Constant, P. Mazerolles, J.J. Ehrhardt, M. Alnot, Thin Solid Films, 101 (1983), p. 83–96CrossRefADSGoogle Scholar
  9. [9]
    M. Delplancke, J. Powers, G. Vandentop, M. Salmeron, G. Somorjai, J. Vac. Sci. Tech. A, 9 (1991), p. 450–455CrossRefADSGoogle Scholar
  10. [10]
    S. Rynders, A. Scheeline, P.Bohn, J. Appl. Phys., 69 (1991), p. 2951–2960CrossRefADSGoogle Scholar
  11. [11]
    G. Chandra, Mat. Res. Soc. Svmp. Proc. Vol. 205 - Electronic Packaging Materials Science V, 1991, p. 97–108Google Scholar
  12. [12]
    Y. Sugiyama, S. Fujimori, H. Yamazaki, I. Hatakeyama, Appl. Phys. Lett., 56 (1990), p. 1403–1405CrossRefADSGoogle Scholar
  13. [13]
    M. Loboda, S. Baumann, M. Edgell, K. Stolt, to be published.Google Scholar
  14. [14]
    N.J. Harrick, Internal Reflection Spectroscopy, 1979, Harrick Scientific CorporationGoogle Scholar
  15. [15]
    S.E. Hicks, A.G. Fitzgerald, S.H. Baker, T. J. Hines. Phil. Mag. B, 62 (1990), p. 193–212CrossRefGoogle Scholar
  16. [16]
    D. Knight and W. White. J. Mater. Res., 4 (1989), p. 385–393CrossRefADSGoogle Scholar
  17. [17]
    W-Y. Lee, J. Appl. Phys., 51 (1980), p. 3365–3372CrossRefADSGoogle Scholar
  18. [18]
    A.S. Byrne, M. Ju, T. Asano, M.M. Rahman, C.Y. Yang, Springer Proc. in Physics, Vol. 43, Amorphous and Crystalline Silicon Carbide and Related Materials II, eds. M.M. Rahman, C.Y. Yang, and G.L. Harris. 1989, p. 81–85Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • M. J. Loboda
    • 1
  1. 1.Dow Corning Corp.MidlandUSA

Personalised recommendations