Skip to main content

Microwave Techniques for Interstitial Hyperthermia

  • Chapter
Book cover Interstitial and Intracavitary Thermoradiotherapy

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

Abstract

Microwave techniques for interstitial hyperthermia involve the use of needle-like antennas which, in most cases, operate at a frequency within the range 300–2450 MHz. The greatest experience appears to be with antennas driven at 915 MHz. Early studies of interstitial antennas include those described by Taylor (1978) and De Sieyes et al. (1981), the latter showing the advantages of fully insulating the antenna from the tissue. Thus, antennas may be inserted into plastic catheters and the technique is readily compatible with brachytherapy methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Casey JP, Bansal R (1986) The near field of an insulated dipole in a dissipative dielectric medium. IEEE Trans Microwave Theory Tech 34: 459–463

    Article  Google Scholar 

  • Chan KW, Chou CK, McDougall JA, Luk KH, Vora NL, Forell BW (1989) Changes in heating patterns of interstitial microwave antenna arrays at different insertion depths. Int J Hyperthermia 5: 499–507

    Article  PubMed  CAS  Google Scholar 

  • Denman DL, Foster AE, Cooper Lewis G et al. (1988) The distribution of power and heat produced by interstitial microwave antenna arrays: II. The role of antenna spacing and insertion depth. Int J Radiat Oncol Biol Phys 14: 537–545

    Article  PubMed  CAS  Google Scholar 

  • de Sieyes DC, Douple EB, Strohbehn JW, Trembly BS (1981) Some aspects of optimization of an invasive microwave antenna for local hyperthermia treatment of cancer. Med Phys 8: 174–183

    Article  PubMed  Google Scholar 

  • Eppert V, Trembly BS, Richter HJ (1991) Air cooling for an interstitial microwave array hyperthermia antenna: theory and experiment. IEEE Trans Biomed Eng 38: 450–460

    Article  PubMed  CAS  Google Scholar 

  • Furse CM, Iskander MF (1989) Three-dimensional electromagnetic power deposition in tumors using interstitial antenna arrays. IEEE Trans Biomed Eng 36: 977–986

    Article  PubMed  CAS  Google Scholar 

  • Hürter W, Reinbold F, Lorenz WJ (1991) A dipole antenna for interstitial microwave hyperthermia. IEEE Trans Microwave Theory Tech 39: 1048–1054

    Article  Google Scholar 

  • Iskander MF, Tumeh AM (1989) Design optimization of interstitial antennas. IEEE Trans Biomed Eng 36: 238–246

    Article  PubMed  CAS  Google Scholar 

  • James BJ, Strohbehn JW, Mechling JA, Trembly BS (1989) The effect of insertion depth on the theoretical SAR patterns of 915 MHz dipole antenna arrays for hyperthermia. Int J Hyperthermia 5: 733–747

    Article  PubMed  CAS  Google Scholar 

  • Jones KM, Mechling JA, Trembly BS, Strohbehn JW (1988) SAR distributions for 915 MHz interstitial microwave antennas used in hyperthermia for cancer therapy. IEEE Trans Biomed Eng 35: 851–857

    Article  PubMed  CAS  Google Scholar 

  • Jones KM, Mechling JA, Strohbehn JW, Trembly BS (1989) Theoretical and experimental SAR distributions for interstitial dipole arrays used in hyperthermia. IEEE Trans Microwave Theory Tech 37: 1200–1209

    Article  Google Scholar 

  • King RWP, Shen LC, Wu TT (1981) Embedded insulated antennas for communication and heating. Electromagnetics 1: 115–117

    Article  Google Scholar 

  • King RWP, Trembly BS, Strohbehn JW (1983) Electromagnetic field of an insulated antenna in a conducting or dielectric medium. IEEE Trans Microwave Theory Tech 31: 574–583

    Article  Google Scholar 

  • Lee DJ, O’Neill MJ, Lam KS, Rostock R, Lam WC (1986) A new design of microwave interstitial applicators for hyperthermia with improved treatment volume. Int J Radiat Oncol Biol Phys 12: 2003–2008

    Article  PubMed  CAS  Google Scholar 

  • Lin JC, Wang YJ (1987) Interstitial microwave antennas for thermal therapy. Int J Hyperthermia 3: 37–47

    Article  PubMed  CAS  Google Scholar 

  • Mechling JA, Strohbehn JW, Ryan TP (1992) Three-dimensional theoretical temperature distributions produced by 915 MHz dipole antenna arrays with varying insertion depths in muscle tissue. Int J Radiat Oncol Biol Phys 22: 131–138

    Article  PubMed  CAS  Google Scholar 

  • Roos D, Hugander A (1988) Microwave interstitial applicators with improved longitudinal heating patterns. Int J Hyperthermia 4: 609–615

    Article  PubMed  CAS  Google Scholar 

  • Ryan TP (1991) Comparison of six microwave antennas for hyperthermia treatment of cancer: SAR results for single antennas and arrays. Int J Radiat Oncol Biol Phys 21: 403–413

    Article  PubMed  CAS  Google Scholar 

  • Ryan TP, Mechling JA, Strohbehn JW (1990) Absorbed power deposition for various insertion depths for 915 MHz interstitial dipole antenna arrays: experiment versus theory. Int J Radiat Oncol Biol Phys 19: 377–387

    Article  PubMed  CAS  Google Scholar 

  • Ryan TP, Hoopes PJ, Taylor JH, Strohbehn JW, Roberts DW, Douple EB, Coughlin CT (1991) Experimental brain hyperthermia: techniques for heat delivery and thermometry. Int J Radiat Oncol Biol Phys 20: 739–750

    Article  PubMed  CAS  Google Scholar 

  • Samaras GM (1984) Intracranial microwave hyperthermia: heat induction and temperature control. IEEE Trans Biomed Eng 31: 63–69

    Article  PubMed  CAS  Google Scholar 

  • Sathiaseelan V, Leybovich L, Emami MS, Stauffer P, Straube W (1991) Characteristics of improved microwave interstitial antennas for local hyperthermia. Int J Radiat Oncol Biol Phys 20: 531–539

    Article  PubMed  CAS  Google Scholar 

  • Satoh T, Stauffer PR (1988) Implantable helical coil microwave antenna for interstitial hyperthermia. Int J Hyperthermia 4: 497–512

    Article  PubMed  CAS  Google Scholar 

  • Satoh T, Stauffer PR, Fike JR (1988) Thermal distribution studies of helical coil microwave antennas for interstitial hyperthermia. Int J Radiat Oncol Biol Phys 15: 1209–1218

    Article  PubMed  CAS  Google Scholar 

  • Stauffer PR (1990) Techniques for interstitial hyperthermia. In: Field SB, Hand JW (eds) An introduction to the practical aspects of clinical hyperthermia. Taylor’ & Francis, London, p 344

    Google Scholar 

  • Taylor LS (1978) Electromagnetic syringe. IEEE Trans Biomed Eng 25: 303–304

    Article  PubMed  CAS  Google Scholar 

  • Trembly BS (1985) The effects of driving frequency and antenna length on power deposition within a microwave antenna array used for hyperthermia. IEEE Trans Biomed Eng 32: 152–157

    Article  PubMed  CAS  Google Scholar 

  • Trembly BS, Wilson AH, Sullivan MJ, Stein AD, Wong TZ, Strohbehn JW (1986) Control of the SAR pattern within an interstitial microwave array through variation of antenna driving phase. IEEE Trans Microwave Theory Tech 34: 568–571

    Article  Google Scholar 

  • Trembly BS, Douple EB, Hoopes PJ (1991) The effect of air cooling on the radial temperature distribution of a single microwave hyperthermia antenna in vivo. Int J Hyperthermia 7: 343–354

    Article  PubMed  CAS  Google Scholar 

  • Tumeh AM, Iskander MF (1989) Performance comparison of available interstitial antennas for microwave hyperthermia. IEEE Trans Microwave Theory Tech 37: 1126–1133

    Article  Google Scholar 

  • Turner PF (1986) Interstitial equal-phased arrays for EM hyperthermia. IEEE Trans Microwave Theory Tech 34: 572–578

    Article  Google Scholar 

  • Wu A, Watson ML, Sternick ES, Bielawa RJ, Carr KL (1987) Performance characteristics of a helical coil microwave interstitial antenna for local hyperthermia. Med Phys 14:235–237

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Dubal NV, Takemoto-Hambleton R, Joines WT (1988) The determination of the electromagnetic field and SAR pattern of an interstitial applicator in a dissipative medium. IEEE Trans Microwave Theory Tech 36: 1438–1443

    Article  Google Scholar 

  • Zhang Y, Joines WT, Oleson JR (1990a) The calculated and measured temperature distribution of a phased interstitial antenna array. IEEE Trans Microwave Theory Tech 38: 69–77

    Article  Google Scholar 

  • Zhang Y, Joines WT, Oleson JR (1990b) Microwave hyperthermia induced by a phased interstitial antenna array. IEEE Trans Microwave Theory Tech 38: 217–221

    Article  CAS  Google Scholar 

  • Zhang Y, Joines WT, Oleson JR (1991a) Heating patterns generated by phase modulation of a hexagonal array of interstitial antennas. IEEE Trans Biomed Eng 38: 92–97

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Joines WT, Oleson JR (1991b) Prediction of heating patterns of a microwave interstitial array at various insertion depths. Int J Hyperthermia 7: 197–207

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hand, J.W. (1993). Microwave Techniques for Interstitial Hyperthermia. In: Seegenschmiedt, M.H., Sauer, R. (eds) Interstitial and Intracavitary Thermoradiotherapy. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84801-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84801-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84803-2

  • Online ISBN: 978-3-642-84801-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics