High Pressure Synthesis and Characterization of Single Crystalline YBa2Cu4O8(Tc = 80 K) and Y2Ba4Cu7O15±x (14 K ≤ Tc ≤ 94 K)

  • E. Kaldis
  • J. Karpinski
  • S. Rusiecki
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 106)


The merits of the high oxygen pressure synthesis of the YBaCuO oxides and the advantages of a two–chamber autoclave are briefly reviewed. The P–T–x and the flux P–T phase diagrams are presented for the first time. The P–T–x diagram shows the P–T cuts across the compositions 123, 123.5 and 124; the 123 is not stable in the low temperature region and the 123.5 must be cooled through the stability range of 124, with the corresponding implications. The flux P–T diagram shows the fields of crystallisation under high oxygen pressure of the above three HTc–phases. Crystallization experiments give some first results about the complex growth mechanism of 124 and 123.5, in which also the vapour phase seems to be important.


Phase Diagram Stability Range Double Chain High Oxygen Pressure Decomposition Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Kaldis, J. Karpinski, S. Rusiecki, B. Bucher, K. Conder, and E. Jilek, M2S-HTSC III, Kanazawa; Physica C 1991Google Scholar
  2. 2.
    E. Kaldis, and J. Karpinski, Eur.J. Solid St.Chemistry, 27 (1990) 143Google Scholar
  3. 3.
    J. Karpinski and E. Kaldis, J. Cr. Growth 79 (1986) 477Google Scholar
  4. 4.
    J. Karpinski and S. Porowski, J. Cr.Growth 66 (1984)11CrossRefADSGoogle Scholar
  5. 5.
    H. Mii, M. Senoo, and I. Fujishiro, Jap.J. Appl.Phys. l5 (1976)77Google Scholar
  6. 6.
    J. Karpinski, E. Kaldis, Nature 331 (1988) 242; J. Karpinski, E. Kaldis, S. Rusiecki, B. Bucher, E. Jilek, Nature 336(1988)660CrossRefADSGoogle Scholar
  7. 7.
    Morris Research Inc., 1862 Euclid Avenue #240, Berkeley, CA 94709, USA; information sheet on autoclaveGoogle Scholar
  8. 8.
    M.R. Chandrachood, D.E. Morris and A.P.B. Sinha, Physica C 171 (1990) 187CrossRefADSGoogle Scholar
  9. 9.
    J. Karpinski et al (to be published)Google Scholar
  10. 10.
    J. Schoenes, E. Kaldis, and J. Karpinski, J. Less–Comm. Metals 164-165 (1990) 50Google Scholar
  11. 11.
    K. Dembinski, M. Gervais, P. Odier, and J.P. Coutures, J. Less–Common Metals 164-165 (1990) 177CrossRefGoogle Scholar
  12. 12.
    J. Karpinski, S. Rusiecki, E. Kaldis, and E. Jilek, J. Less–Comm. Metals 164-165 (1990) 3Google Scholar
  13. 13.
    H.P. Lang, J.P. Ramseyer, D. Brodbeck, T. Frey, J. Karpinski, E. Kaldis, Th. Wolf, Proceedings STM’ 91 Int.Conference, Interlaken, August 1991; also H.P. Lang et al, to be publishedGoogle Scholar
  14. 14.
    J. Karpinski, S. Rusiecki, E. Kaldis, E. Jilek, Proceed. HIP–3 Conference, Osaka, June 1991, Elsevier, December 1991.Google Scholar
  15. 15.
    E.T. Heyen, M. Cardona, J. Karpinski, E. Kaldis, and S. Rusiecki, M2S-HTSC III, Kanazawa, Juli 1991, Physica CGoogle Scholar
  16. 16.
    B. Bucher, J. Karpinski, E. Kaldis, and P. Wach ter, Phys.Rev.B (submitted)Google Scholar
  17. 17.
    J.C. Martinez, J.J. Prejean, J. Karpinski, E. Kaldis, and P. Bordet, Solid State Comm. 75 (1990) 315CrossRefADSGoogle Scholar
  18. 18.
    J.C. Martinez, O. Laborde, J.J. Prejean, C. Chappert, J.P. Renard, J. Karpinski, and E. Kaldis, Europhys. Letters 14 (1991) 693Google Scholar
  19. 19.
    D. Zech, J. Karpinski, H. Keller, E. Kaldis,and W. Kundig (unpublished)Google Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1992

Authors and Affiliations

  • E. Kaldis
    • 1
  • J. Karpinski
    • 1
  • S. Rusiecki
    • 1
  1. 1.Laboratorium für FestkörperforschungETH-HönggerbergZürichSwitzerland

Personalised recommendations