Further Development of the Finite Element Method

  • Apostol Poceski
Part of the Lecture Notes in Engineering book series (LNENG, volume 72)


This chapter will in short present some recent results of investigation in respect to the essence of the method and its accuracy. It will then review the application of the method on the solution of different problems, the possibilities of the further development and the practical application of the mixed method.


Interpolation Function Nodal Displacement Stiffness Element Moment Distribution Transverse Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Atluri S., Tong P., Murakawa H., “Recent studies in hybrid and mixed finite element methods in mechanics”, Int. Conf. H.brid Mixed FEM, John Wiley 1983, 3, 51–71.Google Scholar
  2. [2]
    Bažant Z., “Numerical simulation of progresiv fracture in concrete structures: Recent developments”, Int. Con.Comp.aided Anal.Design Concrete Str., Split 1984, Pineridge press, part I, 1–18.Google Scholar
  3. [3]
    Bergan P., “Some aspects of intepolation and integration in non-liner finite element analysis of reinforced concrete structures”, Int.Conf.Comp.Aided Anal.Des.Com.Str., Split 1984, Pineridge press, part I, 301–16.Google Scholar
  4. [4]
    Berkovié M., Drafković Z., “Stress continuty in the finite element analysis”, Fourth World Congres on FEM, Sept. 1984.Google Scholar
  5. [5]
    Berković M., Draškovié Z., “An efficient solution procedure in mixed finite element analysis”, Proc. NUMETA’85 Conf., Swansea, 1985, 625–634.Google Scholar
  6. [6]
    Biani N., Sture S., Hurlbut B., Day S., “On the prediction of peak and postpeak behaviour of concrete structures”,In.Conf.Comp.Aided Anal. Des. Conc.Str., Split 1984, Pineridge p.I, 245–259.Google Scholar
  7. [7]
    Casadei F., Donea J., Halleux J., Lamain L., “Some experiences with shell analysis”, Int.Conf.Num.Meth.Non-linear Prob., Dubrovnik 1986.Google Scholar
  8. [8]
    Cervera M., Hinton E., Hassan O., “Recent developments in the non-linear analysis of reinforced concrete structures using three-dimensional finite element models”, Int.Conf.Num.Meth. Non-linear Prob., Dubrovnik 1986, 323–343.Google Scholar
  9. [9]
    Clough R., “The finite element method after twenty-five years, a personal view”, Eng.Appl.of FEM, Vol.1, A.S.Computas Novik, Norway 1981, 1–31.Google Scholar
  10. [10]
    Damjanić F., Owen D., “Practical considerations for modeling of postcracking concrete behaviour for finite element analysis of reinforced concrete structures”, Int. Conf. Co,mp. Aided Anal. Des. Conc.Str., Split 1984, Pineridge press, I, 693–706.Google Scholar
  11. [11]
    Drašković Z., Berkovi., “Kontinualnost napona u metodama kona-nih elemenata”, 16 Jug.Kon.Teor.Prim.Mehanike,Be’ii 1984, C7, 249–56.Google Scholar
  12. [12]
    Dvornik J., Radić D., “Determiation of optimal reinforcement in arbitrary cross sections”, Int.Conf.Comp.Aided Anal, Des. Concrete Str., Split 1984, Pineridge press, part II, 747–60.Google Scholar
  13. [13]
    Hellen T., Blackburn W., “Non-linear fracture mechanics and finite elements”, Int.Conf.Num.Meth.Non-linear Prob., Dubrovnik 1986, 3–40.Google Scholar
  14. [14]
    Hinton E., Abdel Rahman H., Anderson H., “Computer-aided analysis of reinforced concrete slab and box-girder bridge decks”, Int. Conf.Comp.Aided Anal.Des, Concrete Str.Split 1984, Pineridge press, part I, 487–508.Google Scholar
  15. [15]
    Hofstetter G., Mang H., “Non-linear finite element analysis of Prestressed concrete shells”, Int.Conf.Num.Meth.Non-linear Prob. Dubrovnik 1986, 344–62.Google Scholar
  16. [16]
    Iron B., Ahmad S., “Techniques of finite elements”, Ellis Horwood Ltd, John Wiley, 1980.Google Scholar
  17. [17]
    Kokalanov G., “Mešoviti izoparametrijski elementi za analiza na proéi”, Dr. Dis., Gradeen Fakultet, Skopje 1983.Google Scholar
  18. [18]
    Marović P.Damjanić F., “Mapped finite element in non-linear stress analysis with special aspects to gravity loading”, Int.Conf.Num. Meth.Non-linear Prob., Dubrovnik 1986, 1263–75.Google Scholar
  19. [19]
    Pian T., Chen D., Kang D., “A new formulation of hybrid/mixed finite elements”, J.Comp.Str. 16, 1983, 81–87.CrossRefzbMATHGoogle Scholar
  20. [20]
    Pićuga A., “Uvod u metodu kona-nih elemenata”, Svjetlost Sarajevo 1986.Google Scholar
  21. [21]
    Poceski A., “The direct method of development of finite elements”, J.Theor. Appl. Mechanics, Belgrad 1985, No.11.Google Scholar
  22. [22]
    Poceski A., “On the coupled action of the vertical and horizontal forces on frames”, Int.Conf.Num.Meth.Non-linear Prob., Dubrovnik 1986, 578–91.Google Scholar
  23. [23]
    Radnik J., Damjanić, F., Pauel D., “Non-linaer dynamic analysis of concrete gravity dams including hydrodynamic interaction”, Int.Conf.Num.Meth.Nonlinear Prob., Dubrovnik 1986, 1247–54.Google Scholar
  24. [24]
    Ramm E., Kompent T., “Reinforced concrete shell analysis using an inelastic large deformation finite element formulation”, Int. Conf. Comp. Aided Anal.Des.Conc.Str., Split 1984,Pineridge, I, 581–97.Google Scholar
  25. [25]
    Rots J., Kusters G., Blaauwendraad J., “The need for fracture mechanics options in finite element models for concrete structures”, Int.Conf.Comp.Aided Anal.Des.Conc.Str. Split 1984, 19–32.Google Scholar
  26. [26]
    Samuelson A., Fransson Bo, “A variational finite strip method with mixed variables”, Conf.Hybride Mixed FEM, John Wiley 1983, 8, 155–71.Google Scholar
  27. [27]
    Scordelis A., “Computer analysis of reinforced and prestressed concrete box girder bridges”, Int.Conf.Comp.Aided Anal. Des.Conc. Str., Split 1984, Pineridge press, 997–1012.Google Scholar
  28. [28]
    Talbot M., Dhatt G., “New shell elements for analysis of pre-and post buckling problems”, Int.Conf.Num.Meth.Non-linear Prob., Dubrovnik 1986, 509–21.Google Scholar
  29. [29]
    Talasalidis D., Wempner G., “A simple finite element for elastic—plastic deformations”, Computer Meth.Appl.Mech.Eng. 34, 1982, 1051–64.CrossRefGoogle Scholar
  30. [30]
    Wunderlich W., “Mixed models for plates and shells: principles elements—examples”, Int.Conf.Hybrid Mixed FEM, John Wiley 1983, 11, 215–41.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Apostol Poceski
    • 1
  1. 1.Gradežen FakultetSkopjeYugoslavia

Personalised recommendations