Advertisement

Plate Bending Analysis

  • Apostol Poceski
Part of the Lecture Notes in Engineering book series (LNENG, volume 72)

Abstract

The plate bending problem is one of the first problems analyzed at the beginning of the development of the FEM. For the first time, the mixed formulation of the finite elements, i.e. the mixed method, was applied to this problem [8]. More details on the historical background of the mixed method were given in ch.2.9. The development of the method in the solution of the plate bending problem will be given here in short.

Keywords

Nodal Displacement Displacement Function Concentrate Force Quadrilateral Element Rectangular Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Backlund J., “Limit analysis of reinforced concrete slabs by a finite element method”, Chalmers Tech. Hog. Sk. Goteborg, 1972.Google Scholar
  2. [2]
    Bell A., “A refined thriangular plate bending finite element”, Int. J.Num. Meth. Eng. Vol. 1, No. 1, 1969.Google Scholar
  3. [3]
    Chang-Chun Wu, “Some problems of a plate bending hybrid model with shear effects”, Int. J. Num. Meth. Eng.Vol. 18, 1982, 755–64.CrossRefzbMATHGoogle Scholar
  4. [4]
    Clough R., Tocher J., “Finite element stiffness analysis of plate bending, Conf. Matrix Meth.Str.Anal, Wright Patterson AFB, Ohio, 1965.Google Scholar
  5. [5]
    Clough R., Felipa C., “A refined quadrilateral element for analysis of plate bending”, AFFDL-TR-68–150, 1968.Google Scholar
  6. [6]
    Cook R., “Some elements for analysis of plate bending”, Proc. ASCE 98, No.EM6, 1972.Google Scholar
  7. [7]
    Gopalacharyulu S., “A higher-order conforming rectangular plate element”, Int. J.Num. Meth.Eng.6,No.2,1972Google Scholar
  8. [8]
    Herrmann L., “A bending snalysis of plates”, Conf.Matrix Meth. Str. Anal. Right Patterson AFB, Ohio, 1965Google Scholar
  9. [9]
    Herrmann L., “Finite element bending analysis for plates”, Proc. ASCE 93, No.EM6, 1967.Google Scholar
  10. [10]
    Kantorovié L., Krilov V., “Pribli2onnie metodi vctego analiza”, Gos.Izd.Teh. Lit., Moskava 1950.Google Scholar
  11. [11]
    Kokalanov G., “Analiza na plo-i po meffiovitiot metod na koneàni elementi”, Grade’en Fakultet, Skopje 1978, magistetrski rad.Google Scholar
  12. [12]
    Kokalanov G., Poceski A., “Proraôun stabilnosti ploäa primenom metovitog metoda konaônih elemenata”, II Jug. Simp.MKE, Maribor 1978.Google Scholar
  13. [13]
    Kokalanov G., “Me§oviti izoparametrijski elementi za analiza na plo61”, Dr. Dis., Grade2en Fakultet, Skopje 1983.Google Scholar
  14. [14]
    Kokalanov G., “Me§oviti kona-ni elementi za analizu ploLa”, 16 Jug. Kon. Teor. Prim. Mehanike, Be-ii 1984, C7.361–68.Google Scholar
  15. [15]
    Kokalanov G., Poceski A., Stankovi6 D., “Analiza na bezgredni ploai”, 15 JUg. Kon. Teor. Prim. Mechanike, Kupari 1981.Google Scholar
  16. [16]
    Poceski A., “Me§ovit metod na koneLni elementi (III)”, 12.Jug. Kon.Teor.Prim. Mechanike, Ohrid 1974.Google Scholar
  17. [17]
    Poceski A., A mixed finite element method for bending of plates“, Int. J.Num. Meth. Eng. 9, No. 1, 1975, 3–15.CrossRefzbMATHGoogle Scholar
  18. [18]
    Poceski A., “From deformation to mixed and hydrid formulation of the finite element method”, J.Theor. Appl.Mechanics, No.5, Belgrade 1979.Google Scholar
  19. [19]
    Poceski A., “Novi koncept u metodu kona8nih elemenata”, Simp.Softwer Hardwer Str. Anal.Proekt. Beograd 1980, 150–72.Google Scholar
  20. [20]
    Poceski A., Kokalanov G., “Vitkanje na plo i - primena na MKE, Grade’en Fakultet, Skopje 1981, Izv. 2. 3.Google Scholar
  21. [21]
    Poceski A., Kokalanov G., “Me6ovit metod za analiza na debeli ploëi”, 16 jug.Kon.Teor.Prim.Mehanike, BeLidi 1984, C7, 369–76.Google Scholar
  22. [22]
    Poceski A., Kokalanov G., “Me3oviti ravninski konaôni elementi”, 16 Jug. Kong. Teor.Prim. Mehanike, Beaiéi 1984, C7, 353–60.Google Scholar
  23. [23]
    Poceski A., “Kriti2ki osvrt na osnovne postavke metoda konaLnih elemenata”, 16 Jug.Kon.Tror. Prim.Meh., Be-ii 1984 (pozvani ref.).Google Scholar
  24. [24]
    Poceski A., Kokalanov G., “Mixed plate bending elements”, Int. Conf. Computer Aided Anal. Design Concrete Str. Part i, Split 1984, Pineridge press, 721–34.Google Scholar
  25. [25]
    Poceski A., “On the deformation shape function in the finite element method”, GAMM tagung, Dubrovnik 1985.Google Scholar
  26. [26]
    Poceski A., “The direct method of development of finite elements”, J.Theor, App. Mechanics, Belgrade 1985, No.11.Google Scholar
  27. [27]
    Poceski A., “On the numerical solution of the Bihamonic equation”, GAMM Tagung 1982, ZAMM Band 63,1983, T 369–72.MathSciNetGoogle Scholar
  28. [28]
    Pryor Ch., Baker R., Frederick D., “Finite element bending analysis of Reissner plates”, ASCE 96, No.EM6, 1970, 967–83.Google Scholar
  29. [29]
    Przemieniecki J., “Theory of matrix structural analysis”, McGraw-Hill, 1968.Google Scholar
  30. [30]
    Rao G.et al., “:A high precision triangular plate bending elements for analysis of thick plates”, Nucl, Eng. Design 30, 1974, 408–412.CrossRefGoogle Scholar
  31. [31]
    Razzaque A., “Program for triangular bending elements with derivative smooting” Int.J.Num.Meth.Eng. 6, 1973, 333–43.CrossRefGoogle Scholar
  32. [32]
    Schmit L., Bogner F., Fox L., “Generation og interelement compatable stiffness and mass matrices by use of interpolation formula”, Conf. Matrix Meth. Str. Anal. Wright Patterson AFB, Ohio 1965.Google Scholar
  33. [33]
    Sekulovié M. “Metod konaànih elemenata”, Gradjevinska knjiga, Beograd, 1984.Google Scholar
  34. [34]
    Stankovié D. Metod konaànih elemenata ploäa“, Dr.Dis. Gradjevinski Fakultet Ni, 1980.Google Scholar
  35. [35]
    Stankovié D., Poceski A., “Neka poboljéanja u meovitom metodu konadnih elemenata”, 15 Jug.Kon.Teor.Prim.Mehanike,Kupari 1981.Google Scholar
  36. [36]
    Timoshenko S., Voinovski-Kriger S., “Theory of plates and shells”, McGraw-Hill, 1959.Google Scholar
  37. [37]
    Wunderlich W., “Mixed models for plates and shells: Principles-elements-examples”, Int.Conf.Hybrid and mixed FEM, Johm Wiley 1983, 215–41.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Apostol Poceski
    • 1
  1. 1.Gradežen FakultetSkopjeYugoslavia

Personalised recommendations