# Fundamentals of the Finite Element Method

• Apostol Poceski
Part of the Lecture Notes in Engineering book series (LNENG, volume 72)

## Abstract

The finite element method (FEM) appeared as a need for analysis of complex structural systems, for which there is no simple solution. In the application of the method the structural system is subdivided into elements of finite dimensions, i.e. finite elements. An approximate solution is found for such a small element, and then, by assembling all the elements of the system, a system of algebraic equations is derived. The solution of these equations gives an approximate solution of the complete structural system. In that way a very complex problem is reduced to a solution of simple algebraic equations.

## Keywords

Interpolation Function Nodal Displacement Displacement Function Nodal Force Boundary Force
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## References

1. [1]
Adini A., Clough R., “Analysis plate bending by the finite element method”, Rept. to National Sci. Foundation, 1961.Google Scholar
2. [2]
Adini A., “Analysis of shell structures by the finite element method”, ph. D. Dis. Dept. Civil Eng. Univ. of California, Berkeley 1961.Google Scholar
3. [3]
Atluri S., Tong P., Murakava H., “Recent studies in hybrid and mixed finite element methods in mechanics”, Conf. Hybrid and Mixed M, John Wiley, 1983, 51–71.Google Scholar
4. [4]
Argiris J., “Triangular elements with linearly varying strain for the matrix displacement method”, J.Royal Aero. Sci. Tech. Note, 69. 711–13.Google Scholar
5. [5]
Argiris J., “Matrix analysis of three-dimensional elastic media–small and large displacements”, AIAA J. 3, 1965, 45–51.
6. [6]
Ashwell D., Sabir A., “A new cylindrical finite element based on simple independent functions”, Dept. Civil Eng. Univ. Wales, Cardiff 1971.Google Scholar
7. [7]
Backlund J., “Limit analysis of reinforced concrete slabs by a finite element method”, Chalmers Tech. Hog Sc. Goteborg, 1972.Google Scholar
8. [8]
Backlund J., “Mixed finite element analysis of plates in bending”, Chalmers Tech. Hog Sc.Goteborg, 1972.Google Scholar
9. [9]
Bogner F., Fox R., Schmit L., “A cylindrical shell discrete element”, AIAA J. 5, No. 4, 1967.
10. [10]
Cantin G., Clough R., “A curved cylindrical shell discrete element”, AIAA J. 6, No. 5, 1968Google Scholar
11. [11]
Clough R., “The finite element method after twenty-five years, a personal,view”. Eng. Appication of the FEM, Vol. 1., A.S.Computas, Novik, Norway 1981, 1–31.Google Scholar
12. [12]
Clough R., “The finite element method in plane stress analysis”, Proc. 2nd ASCE Conf. Electronic Comp., Pitsburg 1960.Google Scholar
13. [13]
Clough R., Tocher J., “Finite eiement stiffness matrices for analysis of plate bending”, Conf.Matrix Meth. Str. Mechanics, Wright Patterson AFB, Ohio, 1965.Google Scholar
14. [14]
Clough R., Felipe C., “A refined quadrilateral element for analysis of plate bending”, AFF-TR-68–150, 1968.Google Scholar
15. [15]
Clough R., “Comparision of three-dimensional finite elements” Symp. Application of FEM in Civil Eng. Nashville, Ten. 1969.Google Scholar
16. [16]
Cook R., “Some elements for analysis of plate bending”, Proc.ASCE 98, No. EMS, 1972, 1453–70.Google Scholar
17. [17]
Connor J., Will D., “A mixed finite element shallow shellGoogle Scholar
18. [17]
Connor J., Will D., “A mixed finite element shallow shell formulation”, Matrix Meth. Str. Anal. Design, Univ. Alabama, 1971, 105–137.Google Scholar
19. [18]
Cowper G., Lindberg G., Olson M., “A shallow shell finite element of thriangular shape”, Int. J.Solids Str. 6, 1970, 1133.
20. [19]
Felipa C., “Refined finite element analysis of linear and non-linear two-dimensional structures”, Univ. of California, Berkeley, Str. Eng. Lab., Rep. SESM 66–22, 1966.Google Scholar
21. [20]
Herrmann L., “A bending analysis of plates, Proc. Conf. Matrix. Meth. Str. Mech., Wright Patterson AFB, Ohio 1965.Google Scholar
22. [21]
Herrmann L., “Finite element bending analysis of plates”, ASCE 93, No. EMS, 1967.Google Scholar
23. [22]
Roland I., Bergan P., “Higher order finite element for plane stress”, ASCE 94, No. EM2, 1968.Google Scholar
24. [23]
Irons B., Zienkiewicz 0., “The isoparametric element system, - a new concept in finite element analysis”, Conf. Recent Advances in Stress Anal., J.B.C..A., Royal Aero, Soc. London 1968.Google Scholar
25. [24]
Irons B., “Engineering application of numerical integration in stiffness method” AIAA J. 4, 1966.Google Scholar
26. [25]
Irons B., Ahmad S., “Techniques of finite elements”, Ellis Horwood, John Wiley, New York 1980.Google Scholar
27. [26]
Kantorovié L., Krilov V., “Pribli2ennie metodi vi§ego analiza”, Gos.Izd.Teh. Lit., Moskva 1950.Google Scholar
28. [27]
Kokalanov G., Poceski A., “Proraëun stabilnosti plo6a primenom me§ovitog metoda kona6nih elemenata”, II Jug. Simp. MKE, Maribor 1979.Google Scholar
29. [28]
Kokalanov G., “Mesoviti izoparametrijski elementi za analiza na ploèi”, Dokt. Dis., Grade2en Fakultet, Skopje 1983.Google Scholar
30. [29]
Kokalanov G., “Mesoviti konaLni elementi za analizu plo-a”, 16 Jug. Kon. Teor. Prim. Mehanike, Becici 1984, C7, 361–68.Google Scholar
31. [30]
Melosh R., “Basis for derivation of matrices by the direct stiffness method”, AIAA J. 1, 1963, 1931.
32. [31]
Oden J., Reddy J., “Some observations on properties of certain mixed finite element approximations”, Int. J.Num. Meth. Eng. Vol. 9. No4., 1975, 933–38.Google Scholar
33. [32]
Pian T., Tong P., Basis for finite element methods for solid continua“, Int.J. Num. Meth. Eng. Vol. 1 1969, 3–28.
34. [33]
Poceski A., “From deformation to mixed and hybrid formulation of the finite element method”, J. Theor. Appl. Mechanics, No. 5, Belgrade 1979.Google Scholar
35. [34]
Poceski A., Simonôe V., “Metodot na koneôni elementi i negovata primena”, Grade2en fakultet, Skopje 1972.Google Scholar
36. [35]
Poceski A., “A mixed finite element method for bending of plates”, Int. J.Num. Meth. Eng. Vol. 9,No. 1, 1975, 3–15.
37. [36]
Poceski A., “Meovit metod na kone-ni elementi (III)”, 12 Jug.Kon. Teor. Prim. Mehanike, Ohrid 1974.Google Scholar
38. [37]
39. [38]
Poceski A., “A new approach for development of finite elements”, J. Theor. App. Mechanics, No.8, Belgrade 1982, 111–18.
40. [39]
Poceski A., “KritiLki osvrt na osnovne postavke metoda konaLnih elemenata”, 16 Jug.Kon. Teor.Prim.Mehanike, BeLiéi 1984 (pozvani referat).Google Scholar
41. [40]
Poceski A., Kokalanov G., “Meovit element za analiza na debeli plo-i”, 16 Jug. Kongres Teor.Prim.Meha.iika, Be6idi, 1984, C7, 369–376.Google Scholar
42. [41]
Poceski A., Kokalanov G., “Meoviti ravninski kona-ni elementi”, 16 Jug. Kongres Teor.Prim.Mehanika, Be-ii 1984, C7, 353–360.Google Scholar
43. [42]
Poceski A., Kokalanov G., “Plo-i - ravninska sostojba na napreganjata”, Grade’en fakultet, Skopje 1982, izv. 2. 4.Google Scholar
44. [43]
Poceski A., Kokalanov G., “Mixed plate bending elements”, Int. Conf.Computer aided anal. Design Concrete Str.part I, Split 1984, Pineridge press, 721–34.Google Scholar
45. [44]
Poceski A., Kokalanov G., “Mixed plane stress finite elements”, Int.Conf.Comp. Aided Anal. Design Concrete Str. Split 194, part I, Pineridge press, 707–19.Google Scholar
46. [45]
Poceski A., Kokalanov G., “Lupi-primena na me3ovitiot metod na kone’-ni elementi”, Grade2en fakultet, Skopje 1986, izv. 2. 5.Google Scholar
47. [46]
Prato C., “A mixed finite element method for thin shell analysis”, ph. D. Th. Dept. Civil Eng. MIT, 1968.Google Scholar
48. [47]
Prato C., “Shell finite element method via Reissner’s principle”, Int.J.Solids Str. 5, 1969. 1119.
49. [48]
Przemieniecki J., “Theory of matrix structural analysis”, Mcraw-Hill, 1968.Google Scholar
50. [49]
51. [50]
Sekulovid M., “Osnovi metode konaftih elemenata”, drugi seminar, MKE i prora-unu in’. konstrukcija, Gradjevinski Fakultet, Beograd, 1982, 208.Google Scholar
52. [51]
53. [52]
Stankovi D., Poceski A., “Neka poboljanja u meovitom metodu kona-nih elemenata za analizu ploda”, 15. Jug. Kongres Teor. Prim. Mehanike, Kupari 1981.Google Scholar
54. [53]
Timoshenko S., Voinovski-Kriger S., “Theory of plates and shells”, McGraw-Hill, 1959.Google Scholar
55. [54]
Tocher J., Hartz B., “High-order finite element for plane stress”, ASCE 93, No.EM4, 1967.Google Scholar
56. [55]
Turner M., Clough R., Matrin H., Topp L., “Stiffness and deflection analysis of complex structures”, J.Aeronaut, Sci. 23, No. 9, 1956, 805–23.
57. [56]
Wunderlich W., “Mixed models for plates and shells: Principles-elements-examples”, Int.conf. Hybrid and Mixed Methods, John Wiley, 1983, 215–41.Google Scholar
58. [57]
Zienkiewicz O,., Taylor R., Too J., “Reduced integration technique in general analysis of plates and shells”, Int. J. Num. Meth. Eng. Vol. 3, 1971, 275–90.
59. [58]
Zienkiewicz 0., Irons B., Ergatoudis J., Ahmad S., Scott F., “Isoparametric and associated element family for two-and three-dimensional analysis”, FEM in Stress Analysis, Tapir 1969.Google Scholar