Fundamentals of the Finite Element Method

  • Apostol Poceski
Part of the Lecture Notes in Engineering book series (LNENG, volume 72)


The finite element method (FEM) appeared as a need for analysis of complex structural systems, for which there is no simple solution. In the application of the method the structural system is subdivided into elements of finite dimensions, i.e. finite elements. An approximate solution is found for such a small element, and then, by assembling all the elements of the system, a system of algebraic equations is derived. The solution of these equations gives an approximate solution of the complete structural system. In that way a very complex problem is reduced to a solution of simple algebraic equations.


Interpolation Function Nodal Displacement Displacement Function Nodal Force Boundary Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Adini A., Clough R., “Analysis plate bending by the finite element method”, Rept. to National Sci. Foundation, 1961.Google Scholar
  2. [2]
    Adini A., “Analysis of shell structures by the finite element method”, ph. D. Dis. Dept. Civil Eng. Univ. of California, Berkeley 1961.Google Scholar
  3. [3]
    Atluri S., Tong P., Murakava H., “Recent studies in hybrid and mixed finite element methods in mechanics”, Conf. Hybrid and Mixed M, John Wiley, 1983, 51–71.Google Scholar
  4. [4]
    Argiris J., “Triangular elements with linearly varying strain for the matrix displacement method”, J.Royal Aero. Sci. Tech. Note, 69. 711–13.Google Scholar
  5. [5]
    Argiris J., “Matrix analysis of three-dimensional elastic media–small and large displacements”, AIAA J. 3, 1965, 45–51.CrossRefGoogle Scholar
  6. [6]
    Ashwell D., Sabir A., “A new cylindrical finite element based on simple independent functions”, Dept. Civil Eng. Univ. Wales, Cardiff 1971.Google Scholar
  7. [7]
    Backlund J., “Limit analysis of reinforced concrete slabs by a finite element method”, Chalmers Tech. Hog Sc. Goteborg, 1972.Google Scholar
  8. [8]
    Backlund J., “Mixed finite element analysis of plates in bending”, Chalmers Tech. Hog Sc.Goteborg, 1972.Google Scholar
  9. [9]
    Bogner F., Fox R., Schmit L., “A cylindrical shell discrete element”, AIAA J. 5, No. 4, 1967.CrossRefGoogle Scholar
  10. [10]
    Cantin G., Clough R., “A curved cylindrical shell discrete element”, AIAA J. 6, No. 5, 1968Google Scholar
  11. [11]
    Clough R., “The finite element method after twenty-five years, a personal,view”. Eng. Appication of the FEM, Vol. 1., A.S.Computas, Novik, Norway 1981, 1–31.Google Scholar
  12. [12]
    Clough R., “The finite element method in plane stress analysis”, Proc. 2nd ASCE Conf. Electronic Comp., Pitsburg 1960.Google Scholar
  13. [13]
    Clough R., Tocher J., “Finite eiement stiffness matrices for analysis of plate bending”, Conf.Matrix Meth. Str. Mechanics, Wright Patterson AFB, Ohio, 1965.Google Scholar
  14. [14]
    Clough R., Felipe C., “A refined quadrilateral element for analysis of plate bending”, AFF-TR-68–150, 1968.Google Scholar
  15. [15]
    Clough R., “Comparision of three-dimensional finite elements” Symp. Application of FEM in Civil Eng. Nashville, Ten. 1969.Google Scholar
  16. [16]
    Cook R., “Some elements for analysis of plate bending”, Proc.ASCE 98, No. EMS, 1972, 1453–70.Google Scholar
  17. [17]
    Connor J., Will D., “A mixed finite element shallow shellGoogle Scholar
  18. [17]
    Connor J., Will D., “A mixed finite element shallow shell formulation”, Matrix Meth. Str. Anal. Design, Univ. Alabama, 1971, 105–137.Google Scholar
  19. [18]
    Cowper G., Lindberg G., Olson M., “A shallow shell finite element of thriangular shape”, Int. J.Solids Str. 6, 1970, 1133.CrossRefGoogle Scholar
  20. [19]
    Felipa C., “Refined finite element analysis of linear and non-linear two-dimensional structures”, Univ. of California, Berkeley, Str. Eng. Lab., Rep. SESM 66–22, 1966.Google Scholar
  21. [20]
    Herrmann L., “A bending analysis of plates, Proc. Conf. Matrix. Meth. Str. Mech., Wright Patterson AFB, Ohio 1965.Google Scholar
  22. [21]
    Herrmann L., “Finite element bending analysis of plates”, ASCE 93, No. EMS, 1967.Google Scholar
  23. [22]
    Roland I., Bergan P., “Higher order finite element for plane stress”, ASCE 94, No. EM2, 1968.Google Scholar
  24. [23]
    Irons B., Zienkiewicz 0., “The isoparametric element system, - a new concept in finite element analysis”, Conf. Recent Advances in Stress Anal., J.B.C..A., Royal Aero, Soc. London 1968.Google Scholar
  25. [24]
    Irons B., “Engineering application of numerical integration in stiffness method” AIAA J. 4, 1966.Google Scholar
  26. [25]
    Irons B., Ahmad S., “Techniques of finite elements”, Ellis Horwood, John Wiley, New York 1980.Google Scholar
  27. [26]
    Kantorovié L., Krilov V., “Pribli2ennie metodi vi§ego analiza”, Gos.Izd.Teh. Lit., Moskva 1950.Google Scholar
  28. [27]
    Kokalanov G., Poceski A., “Proraëun stabilnosti plo6a primenom me§ovitog metoda kona6nih elemenata”, II Jug. Simp. MKE, Maribor 1979.Google Scholar
  29. [28]
    Kokalanov G., “Mesoviti izoparametrijski elementi za analiza na ploèi”, Dokt. Dis., Grade2en Fakultet, Skopje 1983.Google Scholar
  30. [29]
    Kokalanov G., “Mesoviti konaLni elementi za analizu plo-a”, 16 Jug. Kon. Teor. Prim. Mehanike, Becici 1984, C7, 361–68.Google Scholar
  31. [30]
    Melosh R., “Basis for derivation of matrices by the direct stiffness method”, AIAA J. 1, 1963, 1931.CrossRefGoogle Scholar
  32. [31]
    Oden J., Reddy J., “Some observations on properties of certain mixed finite element approximations”, Int. J.Num. Meth. Eng. Vol. 9. No4., 1975, 933–38.Google Scholar
  33. [32]
    Pian T., Tong P., Basis for finite element methods for solid continua“, Int.J. Num. Meth. Eng. Vol. 1 1969, 3–28.CrossRefzbMATHGoogle Scholar
  34. [33]
    Poceski A., “From deformation to mixed and hybrid formulation of the finite element method”, J. Theor. Appl. Mechanics, No. 5, Belgrade 1979.Google Scholar
  35. [34]
    Poceski A., Simonôe V., “Metodot na koneôni elementi i negovata primena”, Grade2en fakultet, Skopje 1972.Google Scholar
  36. [35]
    Poceski A., “A mixed finite element method for bending of plates”, Int. J.Num. Meth. Eng. Vol. 9,No. 1, 1975, 3–15.CrossRefzbMATHGoogle Scholar
  37. [36]
    Poceski A., “Meovit metod na kone-ni elementi (III)”, 12 Jug.Kon. Teor. Prim. Mehanike, Ohrid 1974.Google Scholar
  38. [37]
    Poceski A., “Teorija na konstrukciite”, Grade2en fakultet, 1986.Google Scholar
  39. [38]
    Poceski A., “A new approach for development of finite elements”, J. Theor. App. Mechanics, No.8, Belgrade 1982, 111–18.zbMATHGoogle Scholar
  40. [39]
    Poceski A., “KritiLki osvrt na osnovne postavke metoda konaLnih elemenata”, 16 Jug.Kon. Teor.Prim.Mehanike, BeLiéi 1984 (pozvani referat).Google Scholar
  41. [40]
    Poceski A., Kokalanov G., “Meovit element za analiza na debeli plo-i”, 16 Jug. Kongres Teor.Prim.Meha.iika, Be6idi, 1984, C7, 369–376.Google Scholar
  42. [41]
    Poceski A., Kokalanov G., “Meoviti ravninski kona-ni elementi”, 16 Jug. Kongres Teor.Prim.Mehanika, Be-ii 1984, C7, 353–360.Google Scholar
  43. [42]
    Poceski A., Kokalanov G., “Plo-i - ravninska sostojba na napreganjata”, Grade’en fakultet, Skopje 1982, izv. 2. 4.Google Scholar
  44. [43]
    Poceski A., Kokalanov G., “Mixed plate bending elements”, Int. Conf.Computer aided anal. Design Concrete Str.part I, Split 1984, Pineridge press, 721–34.Google Scholar
  45. [44]
    Poceski A., Kokalanov G., “Mixed plane stress finite elements”, Int.Conf.Comp. Aided Anal. Design Concrete Str. Split 194, part I, Pineridge press, 707–19.Google Scholar
  46. [45]
    Poceski A., Kokalanov G., “Lupi-primena na me3ovitiot metod na kone’-ni elementi”, Grade2en fakultet, Skopje 1986, izv. 2. 5.Google Scholar
  47. [46]
    Prato C., “A mixed finite element method for thin shell analysis”, ph. D. Th. Dept. Civil Eng. MIT, 1968.Google Scholar
  48. [47]
    Prato C., “Shell finite element method via Reissner’s principle”, Int.J.Solids Str. 5, 1969. 1119.CrossRefzbMATHGoogle Scholar
  49. [48]
    Przemieniecki J., “Theory of matrix structural analysis”, Mcraw-Hill, 1968.Google Scholar
  50. [49]
    Sekulovié M., “Metod konaLnih elemenata”, Gradjevinska knjiga, Beograd 21984.Google Scholar
  51. [50]
    Sekulovid M., “Osnovi metode konaftih elemenata”, drugi seminar, MKE i prora-unu in’. konstrukcija, Gradjevinski Fakultet, Beograd, 1982, 208.Google Scholar
  52. [51]
    Stankovié D., “Metod konadnih elemenata ploàa”, Dr.Dis., Gradjevinski fakultet Ni, 1980.Google Scholar
  53. [52]
    Stankovi D., Poceski A., “Neka poboljanja u meovitom metodu kona-nih elemenata za analizu ploda”, 15. Jug. Kongres Teor. Prim. Mehanike, Kupari 1981.Google Scholar
  54. [53]
    Timoshenko S., Voinovski-Kriger S., “Theory of plates and shells”, McGraw-Hill, 1959.Google Scholar
  55. [54]
    Tocher J., Hartz B., “High-order finite element for plane stress”, ASCE 93, No.EM4, 1967.Google Scholar
  56. [55]
    Turner M., Clough R., Matrin H., Topp L., “Stiffness and deflection analysis of complex structures”, J.Aeronaut, Sci. 23, No. 9, 1956, 805–23.zbMATHGoogle Scholar
  57. [56]
    Wunderlich W., “Mixed models for plates and shells: Principles-elements-examples”, Int.conf. Hybrid and Mixed Methods, John Wiley, 1983, 215–41.Google Scholar
  58. [57]
    Zienkiewicz O,., Taylor R., Too J., “Reduced integration technique in general analysis of plates and shells”, Int. J. Num. Meth. Eng. Vol. 3, 1971, 275–90.CrossRefzbMATHGoogle Scholar
  59. [58]
    Zienkiewicz 0., Irons B., Ergatoudis J., Ahmad S., Scott F., “Isoparametric and associated element family for two-and three-dimensional analysis”, FEM in Stress Analysis, Tapir 1969.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Apostol Poceski
    • 1
  1. 1.Gradežen FakultetSkopjeYugoslavia

Personalised recommendations