Skip to main content

Verträglichkeit implantatgeeigneter alloplastischer Werkstoffe im Organismus

  • Conference paper

Zusammenfassung

Die Bedeutung von Implantaten zur Wiederherstellung von Körperfunktionen, die durch Krankheit, natürliche Abnutzung oder Unfall verlorengegangen sind, nimmt stetig zu und läßt sich am einfachsten anhand des großen Bedarfs ermessen. Jährlich werden mehr als 1 500 000 Personen mit Gefäßprothesen versorgt, in 100 000 Fällen werden künstliche Herzklappen eingesetzt, etwa 220 000 Patienten erhalten einen implantierbaren Herzschrittmacher. Für die extrakorporale Zirkulation bei Operationen am Herzen werden jährlich etwa 600 000 Oxygenatoren benötigt. Der Jahresbedarf an künstlichen Nieren nähert sich der Zahl 1 000 000. Beim Gelenkersatz steht die Hüftprothese mit ca. 350 000 Implantationen an erster Stelle vor dem Ersatz des Finger-, Knie-, Schulter- und Ellenbogengelenks. Implantierbare Materialien für die rekonstruktive Chirurgie haben den Umfang vieler Tonnen erreicht. Einen Eindruck von den vielfältigen Einsatzgebieten moderner Kunststoffe vermittelt Tabelle 1.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Albrektsson T, Bränemark P-I, Hansson H-A, Kasemo B, Larsson K, Lundström I, McQueen DH, Skalak R (1983) The interface zone of inorganic implants in vivo: Titanium implants in bone. Annals of Biomedical Engineering 11: 1–27

    Article  CAS  Google Scholar 

  2. Anderson GH, Hellums JD, Moake JL, Alfrey CP (1978) Platelet lysis and aggregation in shear fields. Blood Cells 4: 499–507

    PubMed  CAS  Google Scholar 

  3. Andrade JD (1985) Principles of protein adsorption. In: Andrade JD (Hrsg) Surface and interfacial aspects of biomedical polymers. Plenum Press Bd. 2, New York London, S 1–80

    Google Scholar 

  4. Andrade JD (1985) X-ray photoelectron spectroscopy. In: Andrade JD (Hrsg) Surface and interfacial aspects of biomedical polymers. Plenum Press Bd. 1, New York London, S 105–196

    Google Scholar 

  5. Andrade JD, Smith LM, Gregonis DE (1985) The contact angle and interface energetics. In: Andrade JD (Hrsg) Surface and interfacial aspects of biomedical polymers. Plenum Press Bd. 1, New York London, S 249–292

    Google Scholar 

  6. Augthun M, Brauner A, Kaden P, Mittermayer Ch (1988) Möglichkeiten und Grenzen der Zellkultur. Zeitschrift für Zahnärztl. Implantologie IV: 228–231

    Google Scholar 

  7. Baurschmidt P, Schaldach M (1980) Alloplastische Materialien für den Herzklappenersatz. Biomedizinische Technik 25: 89–95

    PubMed  CAS  Google Scholar 

  8. Benninghofen, Werner, Riedenauer (1987) Secondary ion mass spectrometry. John Wiley, New York

    Google Scholar 

  9. Bolz A (1991) Physikalische Mechanismen der FestkörperProtein-Wechselwirkung an der Phasengrenze a-SiC:HFibrinogen. Dissertation, Naturwissenschaftliche Fakultät der Universität Erlangen-Nürnberg

    Google Scholar 

  10. Brânemark PI, Adell R, Albrektsson T, Lekholm U, Ludkvist S, Rockler B (1983) Osseointegrated titanium fixutres in the treatment of endentulousness. Biomaterials 4: 25

    Article  PubMed  Google Scholar 

  11. Brash JL (1981) Protein interactions with artificial surfaces. In: Salzman EW (Hrsg) Interaction of the blood with natural and artificial surfaces. Marcel Dekker, New York, S 37–60

    Google Scholar 

  12. Breme J (1988) Titanium and titanium alloys biomaterials of preference. Proc sixth world conference on titanium France 1988

    Google Scholar 

  13. Breme J, Heimke G (1984) Corrosion fatigue test of TiA15Fe2.5 hip implant under high stresses. Ti’84 Science and Technology. Lütjering G, Zwicker U, Bunk W (Hrsg) 1351

    Google Scholar 

  14. Brown SA (1988) Biomaterials corrosion and wear of corrosion. In: Webster JG (Hrsg) Encyclopedia of medical devices and instrumentation. John Wiley & Sons, New York Toronto, S 351–361

    Google Scholar 

  15. Callow AD (1982) Historical overview of experimental and clinical development of vascular grafts. In: Stanley IC et al. (Hrsg) Biological and synthetic vascular protheses. Grune & Stratton Inc., New York S. Francisco, London, S 11–26

    Google Scholar 

  16. Cazenave JP, Davies JA, Kazatchkine MD, van Aken WG (1986) Blood-surface interactions: Biological principles underlying hemocompatibility with artificial materials. Elsevier Science Publishing Co. Inc., Amsterdam Oxford New York

    Google Scholar 

  17. Coleman DL (1980) In vitro blood materials interactions: A multitest approach. Ph. D. Dissertation University of Utah

    Google Scholar 

  18. Cotton TM (1985) Surface enhanced raman spectroscopy of biological macromolecules. In: Andrade JD (Hrsg) Surface and interfacial aspects of biomedical polymers. Plenum Press Bd. 2, New York London, S 161–188

    Google Scholar 

  19. Dörre E (1989) Hydroxylapatitkeramik-Beschichtungen für Verankerungsteile von Hüftgelenkprothesen (Technische Aspekte). Biomedizinische Technik 34. 46–52

    PubMed  Google Scholar 

  20. Dunken H (1981) Physikalische Chemie der Glasoberfläche. Leipzig

    Google Scholar 

  21. Eley D, Spivey D (1960) The semiconductivity of organic substances part 6. Transactions of the faraday society 56: 1432

    Article  CAS  Google Scholar 

  22. Eulenberger J, Keller F, Schroeder A, Steinemann SG (1983) Haftung zwischen Knochen und Titan. 4. DVMVortragsreihe Implantate DVM (Hrsg) 131

    Google Scholar 

  23. Ferguson Jr. AB, Laing PG, Hodge ES (1960) The ionization of metal implants in living tissue. J Bone and Joint Surg 42A: 77

    Google Scholar 

  24. Fletcher RD, Schneider G, Labant M, Albertson JN (1979) An in vitro technique for measuring cell adhesion to rigid materials. J Dent Res 58: 1750

    Article  PubMed  CAS  Google Scholar 

  25. Fraker AC, Ruff AW, Sung P, van Orden AC, Speck KM (1980) Surface preparation and corrosion behaviour of titanium alloys for surgical implants. Ti’80 Science and Technology Plenum Press, 2447

    Google Scholar 

  26. Fraker AC, Griffin CD (1985) Corrosion and degradation of implant materials. Second Int. Symposium on corrosion and degradation of implant materials 1983. ASTM Bd. 859, Philadelphia, S 457

    Google Scholar 

  27. Frank E, Zitter M (1971) Metallische Implantate in der Knochenchirurgie. Springer-Verlag, Berl in Heidelberg

    Google Scholar 

  28. Gerlach E, Moser K, Deutsch E, Willmanns W (1973) Erythrocytes thrombocytes leukocytes. Recent advances in membrane and metabolic research. Thieme, Stuttgart

    Google Scholar 

  29. Gölander C-G, Kiss E (1988) Protein adsorption on functionalized and ESCA-characterized polymer films studied ellipsometry. Journal of colloid and interface science 121: 240–253

    Article  Google Scholar 

  30. Gott VL, Furuse A (1971) Antithrombogenic surfaces classification and in vivo evaluation. Fed Proc 30: 1679

    PubMed  CAS  Google Scholar 

  31. Guidelines for blood-material interactions (1985) Chap. 8: Species effects in testing materials and cardiovascular devices in experimental animals. Report of the national heart lung and blood institute working group. NIH Publication No. 85–2185 Revised Edition

    Google Scholar 

  32. Guidelines for blood-material interactions (1980) Report of the national heart lung and Blood Institute working group. NIH Publication No. 85–2185 First Edition

    Google Scholar 

  33. Hahn H, Palich J (1970) Preliminary evaluations of porous metals surfaced titanium for orthopaedic implants. J Biomed Mater Res 4: 571

    Article  PubMed  CAS  Google Scholar 

  34. Hansson HA, Albrektsson M, Bränemark PI (1983) Structural aspects of the interface between tissue and titanium implants. J Prosthet Dent 50: 108

    Article  PubMed  CAS  Google Scholar 

  35. Harbauer G, Brauner H, Schaldach M (1975) A simplified in vivo screening method of implant materials for blood compatibility. Proc of Europ Soc Artif Organs (ESAO) 2: 163

    Google Scholar 

  36. Higham PA (1986) Ion implantation as a tool for improving the properties of orthopaedic alloys. Proc Conf Biomed Mat Boston Dec 1985, S 253

    Google Scholar 

  37. Hlady V, van Wagenen RA, Andrade JD (1985) Total internal reflection intrinsic fluorescence (TIRIF) Spectroscopy applied to protein adsorption. In: Andrade JD (Hrsg) Surface and interfacial aspects of biomedical polymers. Plenum Press Bd. 2, New York London, S 81–120

    Google Scholar 

  38. Hohmann D, Legal H (1984) Application of titanium alloys for orthopaedic surgery. Ti ‘84 Science and Technology

    Google Scholar 

  39. Hufnagel CA (1983) History of vascular graffing. In: Wright CB et al. (Hrsg) John Wright, Boston, S 1–12

    Google Scholar 

  40. Imai Y et al. (1979) Biodegradation of polymeric materials. Trans Soc Biomat 3: 84

    Google Scholar 

  41. Kawahara H (1984) Cellular response to implant materials: Biological physical and chemical factors. Intern Dent J 33: 350

    Google Scholar 

  42. Knutson K, Lyhman DJ (1985) Surface infrared spectroscopy. In: Andrade JD (Hrsg) Surface and interfacial aspects of biomedical polymers. Plenum Press Bd. 1, New York London, S 197–248

    Google Scholar 

  43. Kochwa S, Brownell M, Rosenfield RE, Wasserman LR (1967) Adsorption of proteins by polystyrene particles. I. Molecular unfolding and acquired immunogenicity of IgG. Journal of Immunology 99: 981

    CAS  Google Scholar 

  44. Kubaschewski O, Evans ECI, Alcock CB (1967) Metallurgical thermochemistry. Pergamon Press, London

    Google Scholar 

  45. Kusserow B, Larrow R, Nichols J (1970) Observations concerning prosthesisinduced thromboembolic phenomena made with a vivo embolus system. Trans Amer Soc Artif Int Organs 16: 58

    CAS  Google Scholar 

  46. Kydd WL, Daly CH (1976) Bone-titanium implant response to mechanical stress. J Prosthet Dent 35: 567

    Article  PubMed  CAS  Google Scholar 

  47. Landolt-Börnstein (1962) Magnetische Eigenschaften. Hellwege KH, Hellwege AM ( Hrsg) Springer-Verlag, Berlin

    Google Scholar 

  48. Lederman DM et al. (1976) The intravascular magnetic suspension of a test device for in vivo hemocompatibility evaluation of biomaterials. Trans Amer Soc Artif Int Organs 22: 545

    CAS  Google Scholar 

  49. Lemm W et al. (1980) Biodegradation of some biomaterials in vitro. Proc Europ Soc Art Organs 7: 86

    Google Scholar 

  50. Matloff JM (1985) Cardiac valve replacement — current status. Martinus Nijhoff Publishing. Boston Dordrecht Lancaster, S 310

    Book  Google Scholar 

  51. Mears DC (1975) Dissimilar metals in orthopaedic surgery. J Biomed Mater Res 6: 133

    Article  Google Scholar 

  52. Mohtashemi M, Hines GL (1983) Tissue response to permanently implanted pacemaker generators and electrodes. In: Rubin LR (Hrsg) Biomaterials in reconstructive surgery. The C. V. Mosby Company, St. Louis Toronto London

    Google Scholar 

  53. Morrissey BW (1977) The adsorption and conformation of plasma proteins: A physical approach. Annals of the New York Academy of Science 283: 50

    Article  CAS  Google Scholar 

  54. Mosher DF (1981) Influence of proteins on platelett-surface interactions. In: Salzman EW (Hrsg) Interaction of the blood with natural and artificial surfaces. Marcel Dekker, New York, S 85–102

    Google Scholar 

  55. Nakahara T, Yoshida F (1986) Mechanical effects on rates of hemolysis. Journal of Biom Mat Res 20: 363–374

    Article  CAS  Google Scholar 

  56. Nosé Y et al. (1973) 1st Annual Report, November 15, 1972-December 15, 1973, of the Cleveland Clinic Foundation

    Google Scholar 

  57. Nossel HC (1981) Assessment of activation of coagulation and platelets in vivo. In: Salzman EW (Hrsg) Interaction of the blood with natural and artificial surfaces. Marcel Dekker, New York, S 171–184

    Google Scholar 

  58. Paar D, Maruhn D (1974) Präzision teilautomatisierter Bestimmungen der Thromboplastinzeit bei unterschiedlichen Fibrinogenkonzentrationen. Das Ärztliche Laboratorium 20: 379–384

    CAS  Google Scholar 

  59. Park K, Gerndt SJ, Park H (1988) Patchwise adsorption of fibrinogen on glass surfaces and its implication in platelet adhesion. Journal of Colloid and Interface Science 125: 702–711

    Article  CAS  Google Scholar 

  60. Pilliar RM, Lee JM, Manatopoulos C (1986) Observations on the effects of movement on bone ingrowth into poroussurfaced implants. Clinical Orthopaed and Related Res 20B: 108

    Google Scholar 

  61. Pourdeyhimi B, Wagner D (1986) On the correlation between the failure of vascular grafts and their structural and material properties: A critical analysis. Journal of Biomedical Materials Research 20: 375–409

    Article  PubMed  CAS  Google Scholar 

  62. Ratner BD (1988) Surface characterization of biomaterials. Progress in biomedical engineering 6. Elsevier Science Publishers, Amsterdam Oxford New York

    Google Scholar 

  63. Rätzer-Scheibe HJ, Buhl H (1984) Repassivation of titanium and titanium alloys. Titanium Science and Technology AIME, S 2641

    Google Scholar 

  64. Rubin LR (1983) Biomaterials in Reconstructive Surgery. The C. V. Mosby Company, St. Louis Toronto London, S 1017

    Google Scholar 

  65. Schröder A, Stich H, Straumann F, Sutter F (1978) Über die Anlagerung von Osteozement an einen belasteten Implantatkörper. Schw Mschr f Zahnheilk 88: 1051

    Google Scholar 

  66. Semlitsch M, Staub F, Weber H (1985) Development of vital high strength wrought Ti-6A1–7Nb alloy for surgical implants. 5th Europ Conf on Biomaterials Paris

    Google Scholar 

  67. Semlitsch M, Willert HG (1988) Metallic materials for artificial hip joints. In: Webster JG (Hrsg) Encyclopedia of medical devices and instrumentation. John Wiley & Sons, New York Toronto, S 137–149

    Google Scholar 

  68. Stange J, Mittelmeier H (1989) Elastische Osteosynthese mit Autokompressionsplatten (ACP) aus kohlefaserver stärktem thermoplastischem Kunststoff. Biomedizinische Technik 34: 143–148

    Article  PubMed  CAS  Google Scholar 

  69. Steinemann SG, Perren SM (1984) Titanium as metallic biomaterials. Ti’84 Science and Technology. Lütjering G, Zwicker U, Bunk W (Hrsg) S 1327

    Google Scholar 

  70. Szent-Györgi A (1941) The study of energy-levels in biochemistry. Nature 148: 157

    Article  Google Scholar 

  71. Szycher M (1983) Biocompatible polymers metals and composites. Technomic Publishing Co Inc, Lancaster, S 1071

    Google Scholar 

  72. Temple LJ, Wright JTM (1973) Implants in the cardiovascular and respiratory systems. In: Williams DF, Roaf R (Hrsg) Implants in surgery. Saunders WB Company Ltd., London, S 481–536

    Google Scholar 

  73. Test-Fibel Blutgerinnung (1974) Boehringer Mannheim GmbH

    Google Scholar 

  74. Vanholder, Ringoir (1989) Bioincompatibility: An overview. The International Journal of Artificial Organs 12: 356–365

    PubMed  CAS  Google Scholar 

  75. Weimer E, Schaldach M (1984) Biodegradation von Polyethylen und Polyäther-Polyurethan. Biomedizinische Technik 29: 218–225

    Article  PubMed  CAS  Google Scholar 

  76. Whalen RL, Jeffrey DL, Norman JC (1973) A new method of in vivo screening of thromboresistant biomaterials utilizing flow measurement. Trans Amer Soc Int Organs 19: 19

    CAS  Google Scholar 

  77. Willert HG, Semlitsch M (1981) Biomaterialien und orthopädische Implantate. In: Orthopädie in Praxis und Klinik II. Thieme, Stuttgart, S 22. 1–22. 53

    Google Scholar 

  78. Williams DF (1987) Definitions in biomaterials. Elsevier Science Publishers B.V., Amsterdam Oxford New York Tokyo, S 72

    Google Scholar 

  79. Williams JM, Buchanan RA (1985) Ion implantation of surgical Ti-6A1–4V Alloy Mater Sci Eng 69: 237

    Article  CAS  Google Scholar 

  80. Wilson RS, Lelah MD, Cooper SL (1984) Blood material interactions: Assessment of in vitro and in vivo test methods. In: Williams DF (Hrsg) Techniques of biocompatibility testing. CRC Press, Cleveland

    Google Scholar 

  81. Winter GD et al. (1980) Evaluation of biomaterials. John Wiley & Sons Bd. 1, Chichester New York Brisbane Toronto, S 553

    Google Scholar 

  82. Wranglen G (1985) Korrosion und Korrosionsschutz. Springer-Verlag, Berlin Heidelberg New York Tokyo

    Google Scholar 

  83. Zetner K, Plenk H, Strassl H (1980) Tissue and cell reactions in vivo and in vitro to different metals for dental implants. Dental Implants Heimke G ( Hrsg) Hanser C, München 15

    Google Scholar 

  84. Zitter H (1976) The suitability of metals for surgical implants. In: Schaldach M, Hohmann D (Hrsg) Advances in artificial hip and knee joint technology. Engineering in medicine Bd. 2. Springer-Verlag, Berlin Heidelberg New York, S 227–241

    Google Scholar 

  85. Zitter H (1976) Schädigung des Gewebes durch metallische Implantate. Unfallheilkunde 79: 91

    PubMed  CAS  Google Scholar 

  86. Zitter H, Plenk Jr H (1987) The electromechanical behaviour of metallic implant materials as an indicator of their biocompatibility. J Biomed Mater Res 21: 881

    Article  PubMed  CAS  Google Scholar 

  87. Zwicker U, Etzold U, Moser Th (1984) Abrasive properties of oxide layers on TiA15Fe 2.5 in contact with high dena sity polyethelene. Ti’84 Science and Technology. Lütjering G, Zwicker U, Bunk W (Hrsg), S 1343

    Google Scholar 

  88. Zwicker U, Bühler K, Müller R, Beck H, Schmid HJ, Ferstl J (1980) Mechanical properties and tissue reactions of a titanium alloy for implant material. Titanium ‘80 Science and Technology AIME, S 505

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag

About this paper

Cite this paper

Schaldach, M. (1992). Verträglichkeit implantatgeeigneter alloplastischer Werkstoffe im Organismus. In: Herberhold, C. (eds) Teil I: Referate. Verhandlungsbericht der Deutschen Gesellschaft für Hals-Nasen-Ohren-Heilkunde, Kopf- und Hals-Chirurgie, vol 1992 / 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84669-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84669-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-54870-6

  • Online ISBN: 978-3-642-84669-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics