Skip to main content

Biokompatibilität der Cochlear-Implants

  • Conference paper
Teil I: Referate

Zusammenfassung

Die Implantation einer Innenohrprothese, wenn sie dauerhaft und funktionstüchtig bleiben soll, setzt voraus, daß

  • die umhüllenden Materialien vom Organismus toleriert werden,

  • durch das Einführen des Elektrodenträgers nicht zusätzliche Strukturen geschädigt werden,

  • das operative Vorgehen eine primäre, komplikationslose Heilung gewährleistet,

  • die elektrische Stimulation der Hörnervenfaser adäquat und auch auf Dauer nicht schädigend ist,

  • die spätere Infektionsgefahr vom Mittelohr her über das Implantat in die Liquorräume des Innenohres und die Meningen in engen Grenzen zu halten ist.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Battmer RD, Lehnhardt E, Mohme-Hesse K (1988) Psychophysikalische Meßdaten und Sprachverstehen nach zwei Jahren mit der Clark/NUCLEUS-Prothese. HNO 36: 188–192

    PubMed  CAS  Google Scholar 

  2. Bernstein JJ, Johnson PF, Hench LL, Hunter G, Dawson WW (1977) Cortical histopathology following stimulation with metallic and carbon electrodes. Brain, Behavior and Evolution 14: 126–157

    Article  PubMed  CAS  Google Scholar 

  3. Brown WJ, Babb TL, Soper HV, Lieb JP, Ottino CA, Crandall PH (1977) Tissue reactions to long-term electrical stimulation of the cerebellum in monkeys. J Neurosurg 47: 366–379

    Article  PubMed  CAS  Google Scholar 

  4. Clark GM, Shepherd RK (1984) Cochlear implant round window sealing procedure in the cat. An investigation of autograft and heterograft materials. Acta Otolaryngol (Stockh) Suppl 410: 5–15

    Article  Google Scholar 

  5. Clark GM, Shepherd RK, Pyman BC, Webb RL, Franz B (1987a) The surgery for the insertion and reinsertion of the banded electrode array. Ann Otol Rhinol Laryngol 96, Suppl 128: 10–12

    Google Scholar 

  6. Clark GM, Blarney PJ, Brown Am et al. (1987b) The University of Melbourne-Nucleus multi-electrode cochlear implant. Adv Otorhinolaryngol 38: 1–189

    Google Scholar 

  7. Clark GM, Shepherd RK, Franz B K-H et al. (1988) The histopathology of the human temporal bone and auditory central nervous system following cochlear implantation in a patient. Correlation with psychophysics and speech perception results. Acta Otorhinolaryngol (Stockh) Suppl 448: 5–65

    Google Scholar 

  8. Clark GM, Tong YC, Patrick JF (eds) (1990) Cochlear Prostheses. Churchill Livingstone, Edinburgh London Melbourne New York

    Google Scholar 

  9. Clifford AR, Gibson WRP (1987) The anatomy of the round window with respect to cochlear implant surgery. Ann Otol Rhinol Laryngol 96, Suppl 128: 17–19

    Google Scholar 

  10. Cranswick NE, Franz B K-H, Clark GM, Shepherd RK, Bloom DM (1987) Middle ear infection postimplantation: response of the round window membrane to Streptococcus pyogenes. Ann Otol Rhinol Laryngol 96, Suppl 128: 53–54

    Google Scholar 

  11. Dymond AM, Kaechele LE, Jurist JM, Crandall PH (1970) Brain tissue reaction to some chronically implanted metals. J Neurosurg 33: 574–580

    Article  PubMed  CAS  Google Scholar 

  12. Franz B, Clark GM, Bloom DM (1984) Permeability of the implanted round window membrane. An investigation using horseradish peroxidase. Acta Otolaryngol (Stockh) Suppl 410: 17–23

    Article  Google Scholar 

  13. Galey FR (1984) Initial observations of a human temporal bone with a multi-channel implant. Acta Otolaryngol (Stockh) Suppl 411: 38–44

    CAS  Google Scholar 

  14. Geyer G (1990) Glasionomerzement als Knochenersatz-material in der Ohrchirurgie. Tierexperimentelle and klinische Untersuchungen. Habilitationsschrift Würzburg

    Google Scholar 

  15. Goycoolea MV, Paparella MM, Goldberg B, Carpentier AM (1980) Permeability of round window membrane in otitis media. Arch Otolaryngol 1076: 430–433

    Google Scholar 

  16. Hinojosa R, Marion M (1983) Histopathology of profound sensorineural deafness. Ann New York Ac Sci 405: 459–484

    Article  CAS  Google Scholar 

  17. House WF, Luxford MW, Courtney B (1985) Otitis media in children following the cochlear implant. Ear Hear Suppl 1: 24–26

    Article  Google Scholar 

  18. Johnsson L-G, House WF, Linthicum FH (1982) Otopathological findings in a patient with bilatewral cochlear implants. Ann Otol Rhinol Laryngol 91, Suppl 99: 74–89

    Google Scholar 

  19. Jonck LM, Grobbelaar CJ, Strating H (1989) The biocompatibility of glass-ionomer cement in joint replacement: Bulk testing. Clinical Materials 4 (zit. n. Zöllner)

    Google Scholar 

  20. Kennedy DW (1987) Multichannel intracochlear electrodes: mechanism of insertion trauma. Laryngoscope 97: 42–49

    PubMed  CAS  Google Scholar 

  21. Laszig R (1989) Möglichkeiten eines funktionell-prothetischen Ersatzes des ertaubten Innenohres - eine klinische and experimentelle Studie. Habilitationsschrift Hannover

    Google Scholar 

  22. Lilly JC (1961) Injury and excitation by electrical currents. A. The balanced pulse pair waveform. In: Sheer DM (ed) Electrical stimulation of the brain. Univ of Texas Press, Austin

    Google Scholar 

  23. Luxford WM, House WF (1987) House 3M cochlear implant: surgical consideration. Ann Otol Rhinol Laryngol 96, Suppl 128: 12–14

    Google Scholar 

  24. McCreery DB, Agnew WF (1983) Changes in extracellular potassium and calcium concentration and neural activity during prolonged electrical stimulation of the cat cerebral cortex at defined charge densites. Exper Neurology 79: 371–396

    Article  CAS  Google Scholar 

  25. McFadden JT (1969) Metallurgical principles in neurosurgery. J Neurosurg 31: 373–385

    Article  PubMed  CAS  Google Scholar 

  26. McNeal DR (1976) Analysis of a model for excitation of myelinated nerve. IEEE Transact Biomedical Engineering 23: 329–337

    Article  CAS  Google Scholar 

  27. Merzenich MM, Kessler DK, Rebscher SJ, Schindler RA (1987) Progress in development and application of the University of California at San Francisco/Storz multichannel cochlear implant. Ann Otol Rhinol Laryngol 96, Suppl 128: 122–125

    Google Scholar 

  28. Mortimer JT, Shealy CN, Wheeler C (1970) Experimental non destructive electrical stimulation of the brain and spinal cord. J Neurosurg 32: 553–559

    Article  PubMed  CAS  Google Scholar 

  29. O’Reilly BF (1981) Trauma and realibility of placement of a 20 mm long model human scala tympani electrode array. Ann Otol Rhinol Laryngol 90, Suppl 82: 11–12

    Google Scholar 

  30. Patrick JF, MacFarlane JC (1987) Characterization of mechanical properties of single electrodes and multielectrodes. Ann Otol Rhinol Laryngol 96 Suppl 128: 46–48

    Google Scholar 

  31. Pudenz RH (1942) The use of tantalum clips for hemostasis in neurosurgery. Surgery 12: 791–797

    Google Scholar 

  32. Pudenz RH, Agnew WF, Yuen TGH, Bullara LA (1977) Electrical stimulation of the brain. Light and electron microscopy studies. In: Hamprecht FT, Reswick JB (eds) Applications in neural prostheses. Dekker, New York

    Google Scholar 

  33. Rebscher SJ, Byers CL, Gray RF, Merzenich MM (1981) Development of multichannel electrodes for an auditory prosthesis. National Institutes of Health Quarterly Progress Report March 1. NIH Contract NS-7–2367. Coleman Memorial Laboratory, University of California, San Francisco

    Google Scholar 

  34. Robblee LS, McHardy J, Marston JM, Brummer SB (1980) Electrical stimulation with Pt electrodes. V. The effect of protein on Pt dissolution. Biomaterials 1: 135–139

    Article  PubMed  CAS  Google Scholar 

  35. Shepherd RK, Clark GM, Black RC (1983) Chronic electrical stimulation of the auditory nerve in cats: physiological and histopathological results. Acta Otolaryngol (Stockh) Suppl 399: 19–31

    Article  CAS  Google Scholar 

  36. Shepherd RK, Webb RL, Clark GM et al. (1984) Implanted material tolerance studies for a multiple-channel cochlear prosthesis. Acta Otolaryngol (Stockh) Suppl 411: 71–81

    CAS  Google Scholar 

  37. Sutton D, Miller JM, Pfingst BE (1980) Comparison of cochlear histopathology following two implant designs for use in scala tympani. Ann Otol Rhinol Laryngol 89, Suppl 69: 11–14

    Google Scholar 

  38. Wilson AD, Kent BE (1971) The glass-ionomer cement: a new translucent dental filling material. J Appl Cem Biotechn 21; zit. nach Zöllner

    Google Scholar 

  39. Ylikoski J, Belal A, House WF (1981) Morphology of human cochlear nerve after labyrinthectomy. Acta Otolaryngol (Stockh) 91: 161–166

    Article  CAS  Google Scholar 

  40. Zöllner W (1991) Wissenschaftlicher Hintergrund des ionomeren Zements in der Schädelchirurgie. Vortrag Copenhagen Acoustic Neuroma Conference, Aug 25–29

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag

About this paper

Cite this paper

Lehnhardt, E. (1992). Biokompatibilität der Cochlear-Implants. In: Herberhold, C. (eds) Teil I: Referate. Verhandlungsbericht der Deutschen Gesellschaft für Hals-Nasen-Ohren-Heilkunde, Kopf- und Hals-Chirurgie, vol 1992 / 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84669-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84669-4_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-54870-6

  • Online ISBN: 978-3-642-84669-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics