Skip to main content

Mathematical Modelling of Thermal NOX Emissions in Combustion Chambers

  • Conference paper
Heat Transfer in Radiating and Combusting Systems

Part of the book series: EUROTHERM Seminars ((EUROTHERM,volume 17))

  • 244 Accesses

Abstract

A mathematical model of combustion in typical burners is presented. The model differs from other similar ones presented by other investigators, in that it features a two-step approach, which allows the calculation of the main exothermic reactions of fuel in air, and of those responsible for the formation of pollutants, specifically nitrogen oxides (NOx) to be performed in tandem. The model uses CFD techniques to compute the flowfield in the burner and transport equations are solved for all relevant reacting species. To ensure industrial relevance all factors affecting combustion performance and heat transfer have been included, i.e. three- dimensionality, an exact representation of geometry, the air swirler, turbulence and radiation.

In the first step, the calculation deals with the combustion of methane in air for which a global, single step reaction is assumed. The limiting effect of turbulence on reaction rate is taken into account using an eddy-break-up model. Radiation between the burner walls, the flame and intervening gas is accounted for using a flux model.

In the second step, the product stream resulting from the first step calculation is analysed to determine the concentrations of O, OH and H radicals, subsequently used in a Zeldovich type scheme to form oxides of nitrogen. The convective and diffusive transport terms of the first step are used to solve conservation equations for N and NO.

The paper illustrates the technique in an application to an axial recirculating burner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

CR :

Empirical expression in combustion model

F:

Species concentration

k:

Turbulent kinetic energy per unit mass, J/kg

M:

Mole fraction

m:

Mass fraction

R:

Ideal gas constant

R:

Reaction rate per unit volume, kgs/m3

s:

Stoichiometric oxidant to fuel ratio

Sϕ :

Source term in finite difference equations

T:

Temperature, K

Tact :

Activation temperature, K

\(\vec v\) :

Velocity vector

Гϕ :

Turbulent exchange coefficient for variable ϕ

ε:

Turbulence energy dissipation rate per unit mass, W/kg

μ:

Dynamic viscosity, Ns/m2

ρ:

Density, kg/m3

ϕ:

General dependant variable

fu:

Fuel

MO:

Nitrogen oxides

N2 :

Nitrogen

OX:

Oxygen

ox:

Oxidant

pr:

Product

References

  1. Sawyer E. F.: Atmospheric Pollution by Aircraft Engines and Fuels. AGARD Advisory report 40 (1972).

    Google Scholar 

  2. Process Engineering, 41 (March 1987).

    Google Scholar 

  3. Lefebvre A. H.: Gas Turbine Combustion, MacGraw Hill (1983) 481

    Google Scholar 

  4. Shefer R. W., Sawyer R. F.: Lean remixed Recirculating Flow Combustion for Control of Oxides of Nitrogen. Proc. 16th Int. Symposium on Combustion, The Comb. Inst. (1976) 119–133.

    Google Scholar 

  5. Quan V., Kiegel J. R., Peters R. L.: Predicted Effects of Fluid Dynamic Parameters on Nitric Oxide Formation in Turbulent Jet Diffusion Flames. Combustion and Flame, 25 (1975) 67.

    Article  Google Scholar 

  6. Mizutani Y., Katsuki M.: Emissions from Gas Turbine Combustors. Bulletin of JSME 19 (1976) 1360.

    Google Scholar 

  7. Khalil E. E.: Numerical Computation of Combustion Generated Pollutants. Proc. Italian Flames Days (Lar Rivista du Combustibili) (1981).

    Google Scholar 

  8. Hutchinson P., Khalil E. E., Whitelaw J. H.: Measurement and Calculation of Furnace Flow Properties. AIAA Journal of Energy 1 (1977) 212.

    Google Scholar 

  9. Hung W.: An Experimentally Verified NOx Emission Model for Gas Turbine Combustors. ASME 75-CT-71 (1975).

    Google Scholar 

  10. Pericleous K, Clark I. W., Brais N.: The Modelling of Thermal NOx Emissions in Combustion and its Applications to Burner Design. 2nd Int. PHOENICS User Conf., London (Nov. 1987).

    Google Scholar 

  11. Zeldovich Y. B., Sadovinkov P. Y., Frank-Kamenctskii D. A.: Oxidation of Nitrogen in Combustion. Academy of Sciences of USSR, Moscov (1974).

    Google Scholar 

  12. Markatos N. C., Malin M. R., Cox G.: Mathematical Modelling of Buoyancy-Induced Smoke Flow in Enclosures. Int. J. Heat Mass Transfer 25 (1982) 63–75.

    Article  MATH  Google Scholar 

  13. Rodi W.: Turbulence Models and their Applications in Hydraulics-a State of the Art Review. SFB 80/T/127, Univ. of Karlsruhe (1978).

    Google Scholar 

  14. Pericleous K., Rhodes N.: The Hydrocyclone Classifier-A Numerical Approach. Int. Jour Mineral Processing 17 (1985).

    Google Scholar 

  15. Rosten H. I., Spalding D. B.: PHOENICS Reference Manual. CHAM TR/200, CHAM Limited (1987).

    Google Scholar 

  16. Spalding D. B.: GENMIX: A General Computer Program for Two-Dimensional Parabolic Phenomena. Pergamon Press (1977).

    Google Scholar 

  17. Markatos N. C., Pericleous K. A.: An Investigation ofThree-Dimensional Fires in Enclosures. ASME-MTD 25 (1983) 115–124.

    Google Scholar 

  18. Magnussen B. F., Hjertager B. H.: On Mathematical Modelling of Turbulent Combustion with Special Emphasis on Soot Formation and Combustion, proc. 16th Int. Symp. on Combustion. The Comb. Inst. (1976) 719–729.

    Google Scholar 

  19. Hamaker H. C.: Radiation and Heat Conduction in Light Scattering Material, Philips Res. Rep. 2 (1947) 103–111.

    Google Scholar 

  20. Gordon S., McBride B.: CREK: A Computer Program for Calculations of Complex Chemical Equilibrium Compositions. NASA SP-273 (1971).

    Google Scholar 

  21. Siegmund C. W., Turner D. W.: NOx Emissions from Industrial Boilers: Potential Control Methods. Journal of Engineering for Power (Jan. 1974) 1.

    Google Scholar 

  22. Lisauskas R. A., Snodgrass R. J. etal.: Experimental Investigation of Retrofit Low NOx Combustion Systems. Joint Symp. on Stationery Combustion NOx Control. Boston (May 6–9 1985 ).

    Google Scholar 

  23. DeSoete G.: Etude Paramétrique des Effets de la Stratification de la Flamme Sur les Emissions d’Oxides d’Azote. Revue de l’Institut Français de Petrole 32 (3) (1977) 427.

    Google Scholar 

  24. Gupta A. K., Liley D. G., Syred N.: Swirl Flows. Abacus Press (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin, Heidelberg

About this paper

Cite this paper

Pericleous, K.A., Clark, I.W., Markatos, N.C. (1991). Mathematical Modelling of Thermal NOX Emissions in Combustion Chambers. In: da Graça Carvalho, M., Lockwood, F.C., Taine, J. (eds) Heat Transfer in Radiating and Combusting Systems. EUROTHERM Seminars, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84637-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84637-3_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84639-7

  • Online ISBN: 978-3-642-84637-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics