Skip to main content

Part of the book series: NATO ASI Series ((ASIH,volume 69))

  • 160 Accesses

Abstract

The yeast Saccharomyces cerevisiae is probably the most thoroughly understood amongst eukaryotic organisms and an excellent model for the study of eukaryotic cells in general; indeed, the term “yeast” is often used as a synonim for this species. Recently, however, other yeasts have attracted the attention of researchers as a result of their distinct biological and metabolic properties which open up new possibilities of biological utilization. Among these so called “non-conventional” yeasts, Kluyveromyces lactis has attracted a special interest because of several peculiar characteristics, including the easiness of mass cultivation, its status of safe organism and its very good secretion properties. K.lactis is a budding yeast and, like S.cerevisiae, lends itself easily to genetic analysis. It differs, however, from S.cerevisiae for several important metabolic properties and is a “petite negative” yeast, i.e. a species in which no mitochondrial respiratory deficient mutants have been found. It has a considerably smaller number of chromosomes than S.cerevisiae, which are however larger in size. Pulsed field gel electrophoresis reveals six DNA bands ranging in size roughly between 1.2 and 2.8 megabasepairs (Sor and Fukuhara, 1989). Several genes are being mapped by hybridization on the chromosomes and results are being compared with linkage maps of known mutations obtained by tetrad analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Araki H, Jearnpipatkul A, Tatsumi H, Sakural T, Ushio K, Muta T and Oshima Y (1985) Molecular and functional organization of yeast plasmid pSRl J. Mol. Biol. 182: 191–203.

    Article  CAS  Google Scholar 

  • Bianchi MM, Falcone C, Chen XJ, Wésolowki-Louvel M, Frontali L, and Fukuhara H (1987) Transformation of the yeast Kluyveromyces lactis by new vectors derived from the 1.6 μm circular plasmid pKDl. Curr Genet 12: 185–192.

    Article  CAS  Google Scholar 

  • Bianchi MM, Santarelli R, Frontali L (1991) Plasmid functions involved in the stable propagation of the pKDl circular plasmid in Kluyveromyces lactis. Curr Genet 19: 155–161.

    Article  PubMed  CAS  Google Scholar 

  • Broach JR, Guarascio VR and Jayaram M (1982) Recombination within the yeast plasmid 2μ circle is site — specific. Cell 29: 227–234.

    Article  PubMed  CAS  Google Scholar 

  • Buckholz RG, Gleason MAG (1991) Yeast systems for the commercial production of heterologous proteins. Bio/Technology 9: 1067–1072.

    Article  PubMed  CAS  Google Scholar 

  • Chen XJ, Bianchi MM, Suda K, Fukuhara H (1989) The host range of the pKDl-derived plasmids in yeast. Curr Genet 16: 95–98.

    Article  PubMed  CAS  Google Scholar 

  • Das S, Hollenberg CP (1982) A high frequency transformation system for the yeast Kluyveromyces lactis. Curr Genet 6: 123–128.

    Article  Google Scholar 

  • De Deken RH (1966) The crabtree effect and its relation to the petite mutation. J Gen Microbiol 44: 157–165.

    PubMed  Google Scholar 

  • Fabiani L, Aragona M, Frontali L (1990) Isolation and sequence analysis of a K.lactis chromosomal DNA element able to autonomously replicate in S.cerevisiae and in K.lactis. Yeast 6: 69–76.

    Article  PubMed  CAS  Google Scholar 

  • Falcone C, Saliola M, Chen XJ, Frontali L and Fukuhara H (1986) Analysis of a 1.6-μm circular plasmid from the yeast Kluyveromyces drosophilarum: structure and molecular dimorphism. Plasmid 15: 248–252.

    Article  PubMed  CAS  Google Scholar 

  • Fleer R, Yeh P, Amellal N, Fournier A, Bacchetta F, Baudel P, Jung G, L’Hôte H, Becquart J, Fukuhara H and Mayaux JF (1991) Stabel multicopy vectors for high-level secretion of recombinant human serum albumin by Kluyveromyces yeasts. Biotechnology 9: 968–975.

    Article  PubMed  CAS  Google Scholar 

  • Fleer R, Chen XJ, Amellal N, Yeh P, Fournier A, Guinet F, Gault N, Faucher D, Folliard F, Fukuhara H, Majaux JF (1991) High level secretion of correctly processed recombinant human interleukin-1β in Kluyveromyces lactis. Gene 107:285–295.

    Article  PubMed  CAS  Google Scholar 

  • Fuson GB, Presley HL, Phaff HJ (1987) Deoxyribonucleic acid base sequence relatedness among members of the yeast genus Kluyveromyces. Int J Syst Bact 37: 371–379

    Article  Google Scholar 

  • Futcher AB (1986) Copy number amplification of the 2 μm circle plasmid of Saccharomyces cerevisiae. J Theor Biol 119: 197–204.

    Article  PubMed  CAS  Google Scholar 

  • Cancedo C, Serrano R (1989) Energy-yelding methabolism. In: Rose AH, Harrison JS (eds) The Yeasts. Academic Press Inc., San Diego, pp 205–259.

    Google Scholar 

  • Goffrini P, Wésolowski-Louvel M, Ferrero I (1991) Phosphoglucose isomerase gene is involved in the Rag phenotype of the yeast Kluyveromyces lactis. Mol Gen Genet 228: 401–409.

    Article  PubMed  CAS  Google Scholar 

  • Hardy CM, Clark Walker (1991) Nucleotide sequence of the COXl gene in Kluyveromyces lactis mitochondrial DNA: evidence for recent horizontal transfer of a group II intron. Curr Genet 20: 99–114.

    Article  PubMed  CAS  Google Scholar 

  • Jayaram M, Li YY, Broach JR (1983) The yeast plasmid 2 μm circle encodes componenents required for its high copy propagation. Cell 34: 95–104.

    Article  PubMed  CAS  Google Scholar 

  • Jayaram M, Sutton A, Broach JR (1985) Properties of REP3: a cis-acting locus required for stable propagation of the Saccharomyces cerevisiae plasmid 2 μm circle. Mol Cell Biol 5: 2466–2475.

    PubMed  CAS  Google Scholar 

  • Jearnpipatkul A, Hutacharoen R, Araki H, Oshima Y (1987) A cis-acting locus for the stable propagation of yeast plasmid pSRl. Mol Gen Genet 207: 355–360.

    Article  CAS  Google Scholar 

  • Kikuchi Y (1983) Yeast plasmid requires a cis-acting locus and two plasmid proteins for its stable maintenance. Curr Genet 119: 197–204.

    Google Scholar 

  • Lutstorf U, Megnet R (1968) Multiple forms of alcohol dehydrogenase in S.cerevisiae.I. Physiological control of ADH-2 and propeties of ADH-2 and ADH-4. Archives Biochem Biophys 126: 933–944.

    CAS  Google Scholar 

  • Murray JAH, Scarpa M, Rossi N, Cesareni G (1987) Antagonistic controls regulate copy number of the 2μ plasmid. EMBO J 6: 4205–4212.

    PubMed  CAS  Google Scholar 

  • RagniniA, Fukuhara H (1988) Mitochondrial DNAof the yeast Kluyveromyces: guanine-cytosine rich sequence clusters. Nucl Acid Res 16: 8433–8442.

    Article  Google Scholar 

  • Reiser J, Glumoff V, Kalin M, Ochsner U (1990) Transfer and Expression of heterologous genes in yeasts other than Saccharomyces cerevisiae. Adv Bioch Eng Biotech 43: 75–102.

    CAS  Google Scholar 

  • Saliola M, Gonnella R, Mazzoni C, Falcone C (1991) Two genes encoding putative mitochondrial alcohol dehydrogenase are present in the yeast Kluyveromyces lactis. Yeast 7: 401–412.

    Article  Google Scholar 

  • Saliola M, Shuster JR, Falcone C (1990) The alcohol dehydrogenase system in the yeast Kluyveromyces lactis. Yeast 6: 193–204.

    Article  PubMed  CAS  Google Scholar 

  • Skelly PJ, Hardy CM, Clark Walker (1991) A mobile group II intron of a naturally occurring rearranged mitochondrial genome in K.lactis. Curr Genet 20: 115–120.

    Article  PubMed  CAS  Google Scholar 

  • Som T, Armstrong KA, Volkert FC, Broach JR (1988) Autoregulation of 2 μm circle gene expression provides a model for maintanance of of stable plasmid copy levels. Cell 52: 27–37.

    Article  PubMed  CAS  Google Scholar 

  • Sor F, Fukuhara H (1989) Analysis of chromosomal DNA patterns of the genus Kluyveromyces. Yeast 5: 1–10.

    Article  PubMed  CAS  Google Scholar 

  • Stark MJR, Boyd A, Mileham AJ, Romanos MA (1990) The plasmid — encoded killer system of Kluyveromyces lactis: A Review. Yeast 6: 1–29.

    Article  PubMed  CAS  Google Scholar 

  • Tanguy-Rougeau C, Chen XJ, Wésolowski-Louvel M, Fukuhara H (1990) Expression of a foreign KmR gene in linear killer DNA plasmids in yeast. Gene 91: 43–50.

    Article  PubMed  CAS  Google Scholar 

  • Toh-e A and Utatsu I (1985) Physical and functional structure o a yeast plasmid, pSB3, isolated from Zygosaccharomyces bisporus. Nucl Acids Res 13: 4267–4283.

    Article  PubMed  CAS  Google Scholar 

  • Van den Berg JA, van der Laken KJ, van Ooyen AJJ, Renniers TCHM, Rietveld K, Schaap A, Brake AJ, Bishop RJ, Schultz K, Moyer D, Richman M, Shuster JR (1990) K.lactis as a host for heterologous gene expression: expression and secretion of prochymosin. Bio/Technology 8: 135–139.

    Article  PubMed  Google Scholar 

  • Van der Walt JP (1970) Kluyveromyces van der Walt emend. van der Walt In: Lodder J (ed) The Yeasts: A taxonomic study, 2 Ed. North Holland Publishing Co., Amsterdam, pp 316–378.

    Google Scholar 

  • Van der Walt JP, Johanssen E (1984) Kluyveromyces van der Walt emend. van der Walt in Kreger van Rij NJW (ed) The yeasts, a taxonomic study. 3rd Ed. Elsevier Science Publisher, Amsterdam, pp 224–251.

    Google Scholar 

  • Vaughan-Martini A, Martini A (1987) Taxonomic revision of the genus Kluyveromyces by nuclear deoxyribonucleic acid reassociation. Int J Syst Bact 37: 380–385.

    Article  Google Scholar 

  • Veit BE, Fangman WL (1988) Copy number and partition of the Saccharomyces cerevisiae 2 μm plasmid controlled by transcription regulators. Mol Cell Biol 8: 4949–4957.

    PubMed  CAS  Google Scholar 

  • Volkert FC, Broach JR (1986) Site specific recombination promotes plasmid amplification in yeast. Cell 46: 541–550.

    Article  PubMed  CAS  Google Scholar 

  • Volkert FC, Wilson DW, Broach JR (1989) Deoxyribonucleic acid plasmids in yeast. Microbiol Rev 53: 299–317.

    PubMed  CAS  Google Scholar 

  • Wilson C, Fukuhara H (1991) Distribution of mitochondrial rl type introns and the associated open reading frame in the yeast genus Kluyveromyces. Curr Genet 19: 163–167.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Frontali, L. et al. (1993). Molecular biology of Kluyveromyces lactis . In: Maresca, B., Kobayashi, G.S., Yamaguchi, H. (eds) Molecular Biology and its Application to Medical Mycology. NATO ASI Series, vol 69. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84625-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84625-0_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84627-4

  • Online ISBN: 978-3-642-84625-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics