Skip to main content

Interstitial Macromolecules and the Swelling Pressure of Loose Connective Tissue

  • Conference paper
Mechanics of Swelling

Part of the book series: NATO ASI Series ((ASIH,volume 64))

Abstract

Interstitial (tissue) swelling pressure is an important parameter in the maintenance of homeostasis with respect to fluid balance and exchange between interstitium and blood and lymph. Pressure gradients between blood and interstitium and interstitium and lymph result in a steady state equilibrium which stabilizes tissue volume (largely determined by its water content) and the physicochemical environment in which cells can function normally (Zweifach and Silberberg, 1979; Bert and Pearce, 1984; Michel, 1984).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bert JL, Pearce RH (1984) The interstitium and microvascular exchange. In: Renkin EM, Michel CC, Geiger SR (eds) The cardiovascular system. Microcirculation. American Physiological Society, Bethesda (Handbook of Physiology, Sect. 2, vol. IV, chap 12, p 521)

    Google Scholar 

  • Brace RA, Guyton AC (1979) Interstitial fluid pressure: capsule, free fluid, gel fluid, and gel absorption pressure in subcutaneous tissue. Microvasc Res 18:217–228

    Article  PubMed  CAS  Google Scholar 

  • Brown DC, Vogel KG (1989) Characteristics of the in vitro interaction of a small proteoglycan (PG II) of bovine tendon With Type I Collagen. Matrix 9:468–478

    PubMed  CAS  Google Scholar 

  • Comper WD, Laurent TC (1978) Physiological function of connective tissue polysaccharides. Physiol Rev 58:255–315

    PubMed  CAS  Google Scholar 

  • De Gennes PG (1971) Reptation of a polymer chain in the presence of fixed Obstacles. J Chem Phys 55:572–579

    Article  Google Scholar 

  • De Witt MT, Handley CJ, Oakes BW, Lowther DA (1983) In vitro response of chondrocytes to mechanical loading. The effect of short term mechanical tension. Connect Tissue Res 12:97–109

    Article  Google Scholar 

  • Fessler JH (1960) A structural function of mucopolysaccharides in connective tissue. Biochem J 76:124–132

    PubMed  CAS  Google Scholar 

  • Granger HJ (1981) Physicochemical properties of the extracellular matrix. In: Hargens AR (ed) Tissue fluid pressure and composition, williams & Wilkins, Baltimore, p 43

    Google Scholar 

  • Heinegärd D, Bjorne–Persson A, Coster L, Franzen A, Gardell S, Malmstrom A, Paulsson M, Sandfalk R, Vogel K (1985) The core proteins of large and small interstitial proteoglycans from various connective tissues form distinct subgroups. Biochem J 230:181–194

    PubMed  Google Scholar 

  • Katz EP, Wachtel EJ, Maroudas A (1986) Extrafibrillar proteoglycans osmotically regulate the molecular packing of cartilage collagen. Biochim Biophys Acta 882:136–139

    Article  PubMed  CAS  Google Scholar 

  • Klein J, Meyer FA (1983) Tissue structure and macromolecular diffusion in umbilical cord. Immobilization of endogenous hyaluronic acid. Biochim Biophys Acta 755:400–411

    Article  PubMed  CAS  Google Scholar 

  • Landis EM, Pappenheimer JR (1963) Exchange of substances through the capillary walls. In: Hamilton WF (ed) Circulation. American Physiological Society, Washington DC (Handbook of Physiology, sect. 2, vol. II, chap. 29, p 961)

    Google Scholar 

  • Lowther DA, Preston BN, Meyer FA (1970) Isolation and properties of chondroitin sulphates from bovine heart valves. Biochem J 118:595–601

    PubMed  CAS  Google Scholar 

  • Maroudas A, Bannon C (1981) Measurement of swelling pressure in cartilage and comparison with the osmotic pressure of constituent proteoglycans. Biorheology 18:619–632

    PubMed  CAS  Google Scholar 

  • Maroudas A, Grushko G (1990) Measurement of swelling pressure of cartilage. In: Maroudas A, Kuettner K (eds) Methods in cartilage research, Academic Press, London, p 298

    Google Scholar 

  • Maroudas A, Urban JPG (1980) Swelling pressures of cartilaginous tissues. In: Maroudas A, Holborrow EJ (eds) Studies in joint disease. Pitman Medical, Tunbridge Wells, Kent, p 87

    Google Scholar 

  • Maroudas A, Weinberg PD, Parker KH, Winlove CP (1988) The distribution and diffusivities of small ions in chondroitin sulphate, hyaluronate and some proteoglycan solutions. Biophys Chem 32:257–270

    Article  PubMed  CAS  Google Scholar 

  • Mathews MB, Lozaitye I (1958) Sodium chondroitin sulfate-protein complexes of cartilage. 1. Molecular weight and shape. Arch Biochem Biophys 74: 158–174

    Article  PubMed  CAS  Google Scholar 

  • Meyer FA (1971) A biochemical and biophysical approach to the structure of heart valves. Phd Thesis, Monash University, Clayton, Australia

    Google Scholar 

  • Meyer FA (1983) Macromolecular basis of globular protein exclusion and of swelling pressure in loose connective tissue (umbilical cord). Biochim Biophys Acta 755:388–399

    Article  PubMed  CAS  Google Scholar 

  • Meyer FA, Koblentz M, Silberberg A (1977) Structural investigation of loose connective tissue by using a series of dextran fractions as non-interacting macromolecular probes. Biochem J 161:285–291

    PubMed  CAS  Google Scholar 

  • Meyer FA, Laver-Rudich Z, Tanenbaum R (1983) Evidence for a mechanical coupling of glycoprotein microfibrils with collagen fibrils in wharton’s jelly. Biochim Biophys Acta 75:376–387

    Article  Google Scholar 

  • Meyer FA, Silberberg A (1974) In vitro study of the influence of some factors important for any physicochemical characterization of loose connective tissue in the microcirculation. Microvasc Res 8:263–273

    Article  PubMed  CAS  Google Scholar 

  • Michel CC (1984) Fluid movements through capillary walls. In: Renkin EM, Michel CC, Geiger SR (eds) The cardiovascular system. Microcirculation. American Physiological Society, Bethesda (Handbook of Physiology, sect. 2, vol. Iv, chap 9, p 375)

    Google Scholar 

  • Mörgelin M, Paulsson M, Malström A, Heinegard D (1989) Shared and distinct structural features of interstitial proteoglycans from different bovine tissues revealed by electron microscopy. J Biol Chem 264:12080–12090

    PubMed  Google Scholar 

  • Ogston AG (1958) The spaces in a uniform random suspension of fibers. Trans Faraday Soc 54:1754–1757

    Article  Google Scholar 

  • Schneiderman R, Keret D, Maroudas A (1986) Effect of mechanical and osmotic pressure on the rate of glycosaminoglycan synthesis in the human adult femoral head cartilage. An in vitro study. J Orthop Res 4:393–408

    Article  PubMed  CAS  Google Scholar 

  • Silpananta P, Dunstone JR, Ogston AG (1968) Fractionation of a hyaluronic acid preparation in a density gradient. Biochem J 109:43–50

    PubMed  CAS  Google Scholar 

  • Snashall PD (1977) Mucopolysaccharide osmotic pressure in the measurement of interstitial pressure. Am J Physiol 232:608–616

    Google Scholar 

  • Taylor AE, Granger DN (1984) Exchange of macromolecules across the microcirculation. In: Renkin EM, Michel CC, Geiger SR (eds) The cardiovascular system. Microcirculation. American Physiological Society, Bethesda (Handbook of Physiology, sect. 2, vol. IV, chap 11, p 467)

    Google Scholar 

  • Urban JPG, McMullin JF (1985) Swelling pressure of the intervertebral disc. Influence of proteoglycan and collagen contents. Biorheology 22:145–157

    PubMed  CAS  Google Scholar 

  • Wiederhielm CA (1981) The tissue pressure controversy, a semantic dilemma. In: Hargens AR (ed) Tissue fluid pressure and composition, Williams & Wilkins, Baltimore, p 21

    Google Scholar 

  • Zweifach BW, Silberberg A (1979) The interstitial-lymphatic flow system. In: Guyton AC, Young DB (eds) International review of physiology. Cardiovascular physiology III, Vol. 18, University Park Press, Baltimore, p 215

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Meyer, F.A. (1992). Interstitial Macromolecules and the Swelling Pressure of Loose Connective Tissue. In: Karalis, T.K. (eds) Mechanics of Swelling. NATO ASI Series, vol 64. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84619-9_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84619-9_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84621-2

  • Online ISBN: 978-3-642-84619-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics