Skip to main content

Changes in Cartilage Osmotic Pressure in Response to Loads and their Effects on Chondrocyte Metabolism

  • Conference paper
Mechanics of Swelling

Part of the book series: NATO ASI Series ((ASIH,volume 64))

Abstract

Cartilage is a resilient, tough, connective tissue whose main functions are mechanical. It is rigid enough to provide structural support for tissues such as the ear, nose and larynx. Articular cartilage, found in skeletal joints is more deformable than bone, and is thus able to distribute the load and protect bone from mechanical forces and provide a low friction surface for articulating joints. In the spine, the cartilaginous intervertebral discs, as well as cushioning the vertebral bodies, impart flexibility to the spinal column, enabling it to bend and twist. The components of cartilage are made by the cartilage cells, the chondrocytes. In weight-bearing cartilages, these cells are subjected to an environment which can be dramatically altered by mechanical forces. This chapter describes the effects of mechanical stress on the osmotic environment of the chondrocyte, and shows how the metabolism of the cell is affected by these changes to the extracellular osmolarity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, M.A. And Hutton, W. (1983). The effect of posture on the fluid content of the lumbar intervertebral disc. Spine 8: 665–671

    Article  PubMed  CAS  Google Scholar 

  • Bayliss, M.T., Urban, J.P.G., Johnson, B. And Holms, S. (1986). In vitro method for measuring synthesis rates in the intervertebral disc. J. Othop. Res. 4: 10–17

    Article  CAS  Google Scholar 

  • Broom, N.D. and Marra, D.L. (1985). New structural concepts of articular cartilage demonstrated with a physical model. Conn. Tiss. Res. 14: 1–8

    Article  CAS  Google Scholar 

  • Eisenberg, S.R. and Grodzinsky, A.J. (1987). Kinetics of chemically induced non–equilibrium swelling of articular cartilage and corneal stronia. J. Biomech. Eng. 109: 79–89

    Article  PubMed  CAS  Google Scholar 

  • Eklund, J.A. and Corlett, E.N. (1984). Shrinkage as a measure of the effect of load on the spine. Spine 9: 189–194.

    Article  PubMed  CAS  Google Scholar 

  • Gray M.L., Pizzanelli A.M., Gordzinsky AJ, Lee RC (1986).Mechanical and physicochemical determinants of chondrocyte biosynthetic response J Orthop Res 6, 777–792

    Article  Google Scholar 

  • Grodzinsky, A.J. (1983). Electromechanical and physicochemical properties of connective tissue. CRC Crit. Rev. Biomed. Eng. 9: 133–199

    CAS  Google Scholar 

  • Hascall V.C. and Hascall G.K. (1981) Proteoglycans In: Cell Biology of extracellular matrix ED. ED Hay, Plenum Press, NY: 39–63

    Chapter  Google Scholar 

  • Hoffman, E.K. and Simonsen, L.O. (1989). Membrane mechanisms in volume and pH regulation in vertebrate cells. Physiol. Rev. 69: 315–382

    Google Scholar 

  • Jones, I.L., Klamfeldt, A. and Sandstrom, T. (1982). The effect of continuous mechanical pressure upon the turnover of articular cartilage proteoglycans in vitro. Clin. Orthop. 165: 283–289

    PubMed  CAS  Google Scholar 

  • Maroudas, A. (1979). Physicochemical properties of articular cartilage In “Adult articular cartilage” Ed. M.A.R. Freeman, Pitman Medical, Tunbridge Wells, pp. 215–290

    Google Scholar 

  • Maroudas, A. (1976) Balance between swelling pressure and collagen tension in normal and degenerate cartilage. Nature 260: 808–809

    Article  PubMed  CAS  Google Scholar 

  • Maroudas, A. (1990). Different ways of expressing concentration of cartilage constituents with special reference to the tissue’s organization and functional properties. In, “Methods in Cartilage Research.” Eds. A. Maroudas and K.E. Kuettner. Academic Press, London.

    Google Scholar 

  • Maroudas, A. and Bannon, C. (1981). Measurement of swelling pressure in cartilage and comparison with the osmotic pressure of constituent proteoglycans. Biorheology 18: 613–632.

    Google Scholar 

  • Maroudas, A. and Urban, J.P.G. (1981). Swelling Pressure of Cartilaginous tissues In: Studies in Joint Disease I (eds) A Maroudas and E.J. Holborow, Pitman Medical, Tunbridge Wells

    Google Scholar 

  • McGann, L.E., Stevenson, M., Muldrew, K. and Schachar, N. (1988). Kinetics of osmotic water movement in chondrocytes isolated from articular cartilage and applications to cryopreservation. J. Orthop. Res. 6: 109–115

    Article  PubMed  CAS  Google Scholar 

  • Mow, V.C., Holms, M.H. and Lai, W.H. (1984). Fluid transport and mechanical properties of articular cartilage: A review. J. Biomechanics 17: 377–394

    Article  CAS  Google Scholar 

  • Muir, H. (1981). Chemistry of the ground substance of joint cartilage. In, “The Joints and Synovial Fluid, Vol. II. Ed. L. Sokoloff, Academic Press, New York.: 27–94

    Google Scholar 

  • Nachemson A. (1966). Load on the lumbar discs in different positions of the body Clin Orthop 45: 107–122

    CAS  Google Scholar 

  • Sah, R.L., Kim, Y.L., Doong, J.Y.H., Grodzinsky, A.J., Plaas, A.H.K, and Sandy, J.D. (1989). Biosynthetic response of cartilage explants to dynamic compression. J. Othop. Res. 7: 619–639

    Article  CAS  Google Scholar 

  • Schneiderman, R., Keret, D. and Maroudas, A. (1986). Effects of mechanical and osmotic pressure on the rate of glycosaminoglycan synthesis in the human adult femoral head cartilage. An in vitro study. J. Orthop. Res. 4: 393–408.

    Article  PubMed  CAS  Google Scholar 

  • Simon B., Wu J.S.S., Carlton M.W. et al., (1985). Poroelastaic dynamic structural models of rhesus spinal motion segments. Spine 10: 494–505

    Article  PubMed  CAS  Google Scholar 

  • Sommarin, Y., Larsson, T. and Heinegard, D. (1989). Chondrocyte matrix interactions. Exp. Cell Res. 184: 181–192

    Article  PubMed  CAS  Google Scholar 

  • Stein, W.D. (1986) Transport and diffusion across cell membranes. Academic Press, London

    Google Scholar 

  • Stockwell, R.A. (1979). Biology of cartilage cells. Cambridge University Press, Cambridge, pp. 148–163.

    Google Scholar 

  • Thornton, W., Hoffler, W. and Rummel, J. (1974). Anthropometric changes and fluid shifts on Skylab. Presented Skylab Symposium, Aug. 28th.

    Google Scholar 

  • Urban, J.P.G. and Bayliss, M.T. (1989). Regulation of proteoglycan synthesis rate in cartilage in vitro: influence of extracellular ionic composition. Biochim. Biophys. Acta 992:59–65

    Article  PubMed  CAS  Google Scholar 

  • Urban, J.P.G. and Hall, A.C. (1991). Physical modifiers of cartilage metabolism. In “Articular Cartilage and Osteoarthritis,” Ed. K.E. Kuettner. Raven Press, New York. In Press.

    Google Scholar 

  • Urban, J.P.G. and Maroudas, A. (1981). Swelling of intervertebral disc in vitro. Conn. Tiss. Res. 9: 1–10

    Article  CAS  Google Scholar 

  • Urban, J.P.G. and McMullin, (1988). Swelling pressure of the intervertebral disc. Spine 13: 179–186

    Article  PubMed  CAS  Google Scholar 

  • White, N. (1991). Unpublished observations.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Urban, J.P.G., Hall, A. (1992). Changes in Cartilage Osmotic Pressure in Response to Loads and their Effects on Chondrocyte Metabolism. In: Karalis, T.K. (eds) Mechanics of Swelling. NATO ASI Series, vol 64. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84619-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84619-9_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84621-2

  • Online ISBN: 978-3-642-84619-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics