Skip to main content

The Molecular Basis of Mammalian Cell Growth Control

  • Conference paper
Flow Cytometry

Part of the book series: NATO ASI Series ((ASIH,volume 67))

Abstract

Multicellular organisms have a unique problem with regulation of proliferation of their component cells. Failure of even a large proportion of cells to divide within a tissue is generally of little consequence because of substantial cellular redundancy: i.e. there are always other cells present than can renew the affected tissue. In contrast, tight control of proliferation is an absolute requirement for multicellularity because unrestrained proliferation of even one cell and its progeny will be lethal: this is the disease we call cancer. Recently, there have been many spectacular advances in our understanding of the molecular processes that regulate cell proliferation. Concomittantly with this advance has also arisen a confusion over what regulation of cell proliferation entails. Is regulation exerted at the level of control of the cell cycle, or at the point when a cell decides whether or not to proliferate, quiesce or differentiate, or at the level of the whole tissue or organism by balancing cell gain and cell loss? In this review I will outline the major features of cell growth regulation as they pertain to mammalian cells and attempt to provide a more intergated framework for further discussion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abate C and Curran T (1990) Encounters with fos and jun on the road to AP-1. Sem. Cancer Biol. - Transcription factors, differentiation and cancer 1: 19–26

    CAS  Google Scholar 

  • Alitalo K, Koskinen P, Makela TP, Saksela K, Sistonen L and Winqvist R (1987) Myc oncogenes: activation and amplification. Biochem. Biophys.Acta 907: 1–32

    PubMed  CAS  Google Scholar 

  • Almendral JM, Sommer D, MacDonald-Bravo H, Burckhardt J, Perera J and Bravo R (1988) Complexity of the early genetic response to growth factors in mouse fibroblasts. Mol. Cell. Biol. 8: 2140–2148

    PubMed  CAS  Google Scholar 

  • Andrews B (1992) Dialogue with the cell cycle. Nature 355: 393–394

    Article  PubMed  CAS  Google Scholar 

  • Bagchi S, Weinmann R and Raychaudhuri P (1991) The retinoblastoma protein copurifies with E2F-I, an ElA-regulated inhibitor of the transcription factor E2F. Cell 65: 1063–72

    Article  PubMed  CAS  Google Scholar 

  • Bartlett R and Nurse P (1990) Yeast as a model system for understanding the control of DNA replication in Eukaryotes. Bioessays 12: 457–63

    Article  PubMed  CAS  Google Scholar 

  • Blackwell TK, Kretzner L, Blackwood EM, Eisenman RN and Weintraub H (1990) Sequence-specific DNA binding by the c-Myc protein. Science 250: 1149–51

    Article  PubMed  CAS  Google Scholar 

  • Blackwood EM and Eisenman RN (1991) Max: a helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science 251: 1211–7

    Article  PubMed  CAS  Google Scholar 

  • Buchkovich K, Duffy LA and Harlow E (1989) The retinoblastoma protein is phosphorylated during specific phases of the cell cycle. Cell 58:1097–1105

    Google Scholar 

  • Bursch W, Kleine L and Tenniswood M (1990) The biochemistry of cell death by apoptosis. Biochem Cell Biol 68: 1071–4

    Article  PubMed  CAS  Google Scholar 

  • Campisi J, Gray HE, Pardee AB, Dean M and Sonenshein GE (1984) Cell-cycle control of c-myc but not c-ras expression is lost following chemical transformation. Cell 36: 241–247

    Article  PubMed  CAS  Google Scholar 

  • Chellappan SP, Hiebert S, Mudryj M, Horowitz JM and Nevins JR (1991) The E2F transcription factor is a cellular target for the RB protein. Cell 65: 1053–61

    Article  PubMed  CAS  Google Scholar 

  • Chen P-L, Scully P, Shew J-Y, Wang JYJ and Lee W-H (1989) Phosphorylation of the retinoblastoma gene product is modulated during the cell cycle and cellular differentiation. 58: 1193–1198

    CAS  Google Scholar 

  • Chittenden T, Livingston DM and Kaelin WJ (1991) The T/ElA-binding domain of the retinoblastoma product can interact selectively with a sequence-specific DNA-binding protein. Cell 65: 1073–82

    Article  PubMed  CAS  Google Scholar 

  • Cohen J, Duke R, Fadok V and KS S (1992) Apoptosis and programmed cell death in immunity. Ann Rev Immunol 10: 267–293

    Article  CAS  Google Scholar 

  • Cotter TG, Lennon SV, Glynn JG and Martin SJ (1990) Cell death via apoptosis and its relationship to growth, development and differentiation of both tumour and normal cells. Anticancer Res. 10: 1153–9

    PubMed  CAS  Google Scholar 

  • Curran T and Franza BR (1989) Fos and jun: the AP-1 connection. Cell 55:395–397

    Google Scholar 

  • Dean M, Levine RA, Ran W, Kindy MS, Sonenshein GE and Campisi J (1986) Regulation of c-myc transcription and mRNA abundance by serum growth factors and cell contact. J. Biol. Chem. 261: 9161–6

    PubMed  CAS  Google Scholar 

  • Eilers M, Schirm S and Bishop JM (1991) The MYC protein activates transcription of the alpha-prothymosin gene. EMBO J. 10: 133–41

    PubMed  CAS  Google Scholar 

  • Ellis RE and Horvitz HR (1991) Two C. elegans genes control the programmed deaths of specific cells in the pharynx. Development 112: 591–603

    PubMed  CAS  Google Scholar 

  • Evan G, Wyllie A, Gilbert C, Littlewood T, Land H, Brooks M, CM W, Penn L and Hancock D (1992) Induction of apoptosis in fibroblasts by c-myc protein. Cell 63: 119–125

    Article  Google Scholar 

  • Freytag SO (1988) Enforced expression of the c-myc oncogene inhibits cell differentiation by precluding entry into a distinct predifferentiation state in G0/G1. Mol. Cell. Biol. 8: 1614–1624

    PubMed  CAS  Google Scholar 

  • Hann SR, Thompson CB and Eisenman RN (1985) C-myc oncogene protein synthesis is independent of the cell cycle in human and avian cells. Nature 314: 366–369

    Article  PubMed  CAS  Google Scholar 

  • Harmon BV, Takano YS, Winterford CM and Gobe GC (1991) The role of apoptosis in the response of cells and tumours to mild hyperthermia. Int J Radiat Biol 59: 489–501

    Article  PubMed  CAS  Google Scholar 

  • Heikkila R, Schwab G, Wickstrom E, Loke SL, Pluznik DH, Watt R and Neckers LM (1987) A c-myc antisense oligodeoxynucleotide inhibits entry into S phase but not progress from G0 to G1. Nature 328: 445–449

    Article  PubMed  CAS  Google Scholar 

  • Hockenbery D, Nunez G, Milliman C, Schreiber RD and Korsmeyer SJ (1990) Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 348: 334–6

    Google Scholar 

  • Hockenbery DM, Zutter M, Hickey W, Nahm M and Korsmeyer SJ (1991) BCL2 protein is topographically restricted in tissues characterized by apoptotic cell death. Proc Natl Acad Sci U S A 88: 6961–5

    Article  PubMed  CAS  Google Scholar 

  • Hunter T and Pines J (1991) Cyclins and cancer. Cell 66: 1071–4

    Article  PubMed  CAS  Google Scholar 

  • Ingvarsson S (1990) The myc gene family proteins and their role in transformation and differentiation. Semin Cancer Biol 1: 359–69

    PubMed  CAS  Google Scholar 

  • Jones N (1990) Transcriptional regulation by dimerization: two sides to an incestuous relationship. Cell 61: 9–11

    Article  PubMed  CAS  Google Scholar 

  • Kelly K, Cochran BH, Stiles CD and Leder P (1983) Cell specific regulation of the c-myc gene by lymphocyte mitogens and platelet-derived growth factor. Cell 35: 603–610

    Article  PubMed  CAS  Google Scholar 

  • Korsmeyer SJ, McDonnell TJ, Nunez G, Hockenbery D and Young R (1990) Bcl-2: B cell life, death and neoplasia. Curr Top Microbiol Immunol 166: 203–7

    Article  PubMed  CAS  Google Scholar 

  • Land H, Parada LF and Weinberg RA (1983) Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 304: 596–602

    Article  PubMed  CAS  Google Scholar 

  • Lennon SV, Martin SJ and Cotter TG (1990) Induction of apoptosis (programmed cell death) in tumour cell lines by widely diverging stimuli. Biochem. Soc. Trans. 18: 343–5

    PubMed  CAS  Google Scholar 

  • Levine A (1992) The p53 tumour suppressor gene and product. Cancer Surveys 12: 59–79

    PubMed  CAS  Google Scholar 

  • Littlewood T, Amati B, Land H and Evan G (1992) Max and c-Myc/Max DNA binding activities in cell extracts. Oncogene In Press:

    Google Scholar 

  • Lord KA, Hoffman-Liebermann B and Liebermann DA (1990) Complexity of the immediate early respnse of myeloid cells to terminal differentiation and growth arrest includes ICAM-1, Jun-B and histone variants. 5: 387–396

    CAS  Google Scholar 

  • Matsushime H, Roussel MF, Ashmun RA and Sherr CJ (1991) Human D-type cyclin. Cell 65: 701–13

    Article  PubMed  CAS  Google Scholar 

  • McConkey DJ, Orrenius S and Jondal M (1990) Cellular signalling in programmed cell death (apoptosis). Immunol Today 11: 120–1

    Article  PubMed  CAS  Google Scholar 

  • Mohn KL, Laz TM, Hsu JC, Melby AE, Bravo R and Taub R (1991) The immediate-early growth response in regenerating liver and insulin-stimulated H-35 cells: comparison with serum-stimulated 3T3 cells and identification of 41 novel immediate-early genes. Mol Cell Biol 11: 381–90

    PubMed  CAS  Google Scholar 

  • Moore JP, Hancock DC, Littlewood TD and Evan GI (1987) A sensitive and quantitative enzyme-linked immunosorbence assay for the c-myc and N-myc oncoproteins. Oncogene Res. 2: 65–80

    PubMed  CAS  Google Scholar 

  • Mudryj M, Devoto SH, Hiebert SW, Hunter T, Pines J and Nevins J (1991) Cell cycle regulation of the E2F transcription factor involves an interaction with cyclin A. Cell 65: 1243–53

    Article  PubMed  CAS  Google Scholar 

  • Penn L, Brooks M, Laufer E, Littlewood T, Morgenstern J, Evan G, Lee W and Land H (1990a) Domains of human c-myc protein required for autosuppression and cooperation with ras oncogenes are overlapping. Mol. Cell. Biol. 10: 4961–4966

    PubMed  CAS  Google Scholar 

  • Penn LJZ, Brooks MW, Laufer EM and Land H (1990b) Negative autoregulation of c-myc transcription. EMBO J. 9: 1113–1121

    PubMed  CAS  Google Scholar 

  • Pines J (1991) Cyclins: wheels within wheels. Cell Growth & Diff. 2: 305–310

    CAS  Google Scholar 

  • Pines J (1992) Cell proliferation and control. Curr. Opin. Cell Biol. 4: 144–147

    Article  PubMed  CAS  Google Scholar 

  • Rabbitts PH, Watson JV, Lamond A, Forster A, Stinson MA, Evan G, Fischer W, Atherton E, Sheppard R and Rabbitts TH (1985) Metabolism of c-myc gene products: c-myc mRNA and protein expression in the cell cycle. EMBO J. 4: 2009–2015

    PubMed  CAS  Google Scholar 

  • Rustgi AK, Dyson N and Bernards R (1991) Amino-terminal domains of c-myc and N-myc proteins mediate binding to the retinoblastoma gene product. Nature 352: 541–4

    Article  PubMed  CAS  Google Scholar 

  • Sagar SM, Sharp FF and Curran T (1988) Expression of c-fos protein in brain: metabolic mapping at the cellular level. Science 240: 1328–1331

    Article  PubMed  CAS  Google Scholar 

  • Sentman CL, Shutter JR, Hockenbery D, Kanagawa O and Korsmeyer SJ (1991) bcl-2 inhibits multiple forms of apoptosis but not negative selection in thymocytes. Cell 67: 879–88

    Google Scholar 

  • Stone J, de Lange T, Ramsay G, Jakobvits E, Bishop JM, Varmus H and Lee W (1987) Definition of regions in human c-myc that are involved in transformation and nuclear localization. Mol. Cell. Biol. 7: 1697–1709

    PubMed  CAS  Google Scholar 

  • Thompson CB, Challoner PB, Neiman PE and Groudine M (1985) Levels of c-myc oncogene mRNA are invariant throughout the cell cycle. Nature 314: 363–366

    Article  PubMed  CAS  Google Scholar 

  • Vinson C and Garcia K (1992) Molecular model for DNA recognition by the family of basic-helix-loop-helix-zipper proteins. New Biologist 4: 396–403

    PubMed  CAS  Google Scholar 

  • Waters C, Littlewood T, Hancock D, Moore J and Evan G (1991) c-myc protein expression in untransformed fibroblasts. Oncogene 6: 101–109

    Google Scholar 

  • Weinberg R (1992) The retinoblastoma gene and gene product. Cancer Surveys 12: 43–57

    PubMed  CAS  Google Scholar 

  • Williams GT (1991) Programmed cell death: apoptosis and oncogenesis. Cell 65: 1097–8

    Article  PubMed  CAS  Google Scholar 

  • Williams S, Evan G and Hunt S (1990a) Spinal c-fos induction by sensory stimulation in neonatal rats. Neuroscience Lett. 9: 309–314

    Article  Google Scholar 

  • Williams S, Evan GI and Hunt SP (1990b) Changing patterns of c-fos induction in spinal neurons following thermal cutaneous stimulation in the rat. Neuroscience 36: 73–81

    Article  PubMed  CAS  Google Scholar 

  • Wisden W, Errington M, Williams S, Dunnett S, Waters C, Hancock D, Evan G, Bliss T and Hunt S (1990) Differential expression of immediate early genes in the hippocampus and spinal cord. Neuron 4: 603–614

    Article  PubMed  CAS  Google Scholar 

  • Wyllie AH (1987) Apoptosis: cell death in tissue regulation. J. Path. 153: 313–316

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Evan, G.I. (1993). The Molecular Basis of Mammalian Cell Growth Control. In: Jacquemin-Sablon, A. (eds) Flow Cytometry. NATO ASI Series, vol 67. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84616-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84616-8_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84618-2

  • Online ISBN: 978-3-642-84616-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics