Skip to main content

Energy Transfer

  • Conference paper
Flow Cytometry

Part of the book series: NATO ASI Series ((ASIH,volume 67))

  • 157 Accesses

Abstract

In most instances classification of biological cells is based on a morphological description. This was established by conventional microscopy using different staining procedures and in many instances still is the prime source for the discrimination of different cell types. However, staining reveals or highlights the spatial organization of mostly intracellular chemistry and biochemistry. Antibodies raised against different protein structures and labeled with various chromophores increased the level of discrimination of different cell classes even further. In most cases, cytometry uses the very same principles to discriminate different cell types. Cells are stained and/or labeled (after fixation) and the intensity of emitted fluorescence light is measured. Based on the assumption, that fluorescence emission intensity is proportional to the number of molecules bound and binding is stoichiometric to molecules/structures of interest, a quantitative analysis of cell constituents serves as discrimination of cell classes or subclasses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arndt-Jovin DJ, Jovin TM (1976) Cell separation using fluorescence emission anisotropy. In: Membranes and Neoplasia. New Approaches and Strategies, Vol. 9, Progress in Clinical and Biological Research. Marchesi VT (ed). Alan Liss, New York pp. 123–136

    Google Scholar 

  • Auld DS, Latt SA, Vallee BL (1972) An approach to inhibition kinetics. Measurement of enzyme-substrate complexes by energy transfer. Biochemistry 11: 4994–4999

    Article  PubMed  CAS  Google Scholar 

  • Beisker W, Eisert WG (1984) Probing macromolecular structures by flow cytometric fluorescence polarization measurements. In: Eisert WG and Mendelsohn ML (eds.) Biological Dosimetry, Springer - Verlag, Berlin Heidelberg pp. 235–242

    Chapter  Google Scholar 

  • Birk G (1990) Hochauflösende Fluoreszenzpolarisationsmessungen membrangebundener Farbstoffe an Einzelzellen, Dissertation Universität Hannover

    Google Scholar 

  • Cantor CR, Pechuks P (1971) Determination of distance distribution functions by singlet-singlet energy transfer. Proc. Natl. Acad. Sc. U.S.A. 68: 2099–2101

    Article  CAS  Google Scholar 

  • Cathou RE, Bunting JR Resonance energy transfer studies on the conformation of antibodies, In: Chen RF, Edelhoch H (eds) (1976) Biochemical Fluorescence Concepts, Vol.2, Marcel Dekker, New York, pp. 845–878

    Google Scholar 

  • Cercek L, Cercek B, Ockey CH (1973) Structureness of the cytoplasmic matrix and Michaelis-Menten constants for the hydrolysis of FDA during the cell cycle in Chinese hamster ovary cells. Biophysik 10: 187–194

    Article  PubMed  CAS  Google Scholar 

  • Cercek L, Cercek B, Franklin CIV (1974) Biophysical differentiation between lymphocytes from healthy donors, patients with malignant diseases and other disorders. Br. J. Cancer 29: 345–352

    Article  PubMed  CAS  Google Scholar 

  • Chan SS, Arndt-Jovin DJ, Jovin TM (1979) Proximity of lectin receptors on the cell surface measured by fluorescence energy transfer in a flow system. J. Histochem. Cytochem. 27: 56–64

    Article  PubMed  CAS  Google Scholar 

  • Chance B., Lee C-P, Blasie JK (eds) (1971) Probes of Structure and Function of Macromolecules and Membranes. Academic Press, Vol. 1: New York

    Google Scholar 

  • Dale RE, Bauer RK (1971) Concentration depolarization of the fluorescence of dystuffs in viscous solution. Acta Phys. Pol. A40: 853–882

    Google Scholar 

  • Dale RE, Eisinger J (1976) Intramolecular energy transfer and molecular conformation. Proc. Natl. Acad. Sc. U.S.A. 73: 271–273

    Article  CAS  Google Scholar 

  • Damjanovich S, Somogyi B, Balasz M, Kertai P, Redai I (1980) Fluorescence Double Labeling and Energy Transfer in Studying Intracellular Interactions. Karger, Basel. Antibiotics Chemother. 28: 142–146

    CAS  Google Scholar 

  • Darnall DW, Abbot F, Gomez JE, Birnbaum ER (1976) Fluorescence energy transfer measurements between the calcium binding site and the specificity pocket of bovine trypsin using lanthanide probes. Biochemistry 15: 5017–5023

    Article  PubMed  CAS  Google Scholar 

  • Eisert W G, Beisker W (1980) Epi - illumination optical design for fluorescence polarization measurements in flow systems. Biophys. J. 31: 97–112

    Article  PubMed  CAS  Google Scholar 

  • Fernandez SM Berlin RD (1976) Cell surface distribution of lectin receptors determined by resonance energy transfer. Nature 264: 411–415

    Article  PubMed  CAS  Google Scholar 

  • Foerster T (1946) Naturwiss. 88: 166

    Article  Google Scholar 

  • Foerster T (1948) Zwischenmolekulare Energiewanderung und Fluoreszenz. Annalen der Physik. 2 (6): 55–75

    Article  Google Scholar 

  • Foerster T (1951) Fluoreszenz Organischer Verbindungen. Vandenhoeck & Ruprecht, Goettingen

    Google Scholar 

  • Grinvald A, Haas E, Steinberg IZ (1972) Evaluation of the distribution of distances between energy donors and acceptors by fluorescence decay. Proc. Natl. Acad. Sci. U.S.A. 69: 2273–2277

    Article  PubMed  CAS  Google Scholar 

  • Hudson EN, Weber G (1973) Biochemistry 12: 4154–4161

    Article  PubMed  CAS  Google Scholar 

  • Inbar M, Shinitzky M, Sachs L (1973) Rotational relaxation time of concanavalin A bound to the surface membrane of normal and malignant transformed cells. J. Mol. Biol. 81: 245–253

    Article  PubMed  CAS  Google Scholar 

  • Inbar M, Shinitzky M (1975) Decrease in microviscosity of lymphocyte surface membrane associated with stimulation induced by concanavalin A. Eur. J. Immunol. 5: 166–170

    Article  PubMed  CAS  Google Scholar 

  • Jablonski A (1970) Anisotropy of fluorescence of molecules excited by excitation transfer. Acta Phys. Pol. A38: 453–458

    CAS  Google Scholar 

  • Kallmann H, London F (1928) Z. physik. Chem. ( B) 2: 207

    Google Scholar 

  • Kater S B, Cohan C S, Jacobs G A, Miller J P (1986) Image intensification of stained, functioning, and growing neurons. In: De Weer P, Salzberg B M (eds) Optical methods in cell physiology, Wiley-Interscience, New York, p. 31

    Google Scholar 

  • Kawski A, Kaminsky J (1974) Energieübertragung zwischen gleich- und ungleichartigen Molekülen in Lösung. Theorie Z. Naturforsch. A 29: 452–456

    Google Scholar 

  • Keller PM, Person S, Snipes W (1977) A fluorescence enhancement assay of cell fusion. Biophys. J. 17: 30a

    Google Scholar 

  • Latt SA, Cheung HT, Blout FR (1965) Energy Transfer. A system with relatively fixed donor - acceptor separation. J. Am. Chem. Soc. 87: 995–1003

    Article  PubMed  CAS  Google Scholar 

  • Latt SA, Auld DS, Vallee BL (1970) Surveyor substrates: Energy transfer gauges of active center topography during catalysis. Proc. Natl. Acad. Sc. U.S.A. 67: 1383–1389

    Article  CAS  Google Scholar 

  • Levinson SA, Dandliker WH, Brawn RJ, Vanderlaan WP (1976) Fluorescence polarization measurement of the hormone-binding site interaction. Endocrinology 99: 1129–1143

    Article  Google Scholar 

  • Luk GK (1971) Study of the nature of the metal-binding sites and estimate of the distance between the metal-binding sites in transferrin using trivalent lanthanide ions as fluorescent probes. Biochemistry 10: 2838–2843

    Article  CAS  Google Scholar 

  • Matsumoto S, Hammes GG (1975) Fluorescence energy transfer between ligand binding sites on aspartate transcarbamylase. Biochemistry 14: 214–224

    Article  PubMed  CAS  Google Scholar 

  • Perrin F (1926) Polarization de la lumiere de fluorescence Vie moyenne de molecules dans Tetat excite. J. Phys. 12: 390–401

    Google Scholar 

  • Perrin F (1932) Ann. Chim. Phisique 17: 283

    CAS  Google Scholar 

  • Perrin J (1924) 2me conseil de Chimie Solvay Bruxelles. Gauther-Villars Paris 1925:322

    Google Scholar 

  • Perrin J (1927) C. R. Acad. Sci. Paris 184: 1097

    CAS  Google Scholar 

  • Peters R (1971) Study of membrane thickness by energy transfer. Biochem. Biophys. Acta 233: 465–468

    Article  PubMed  CAS  Google Scholar 

  • Radda GK, Vanderkooj J (1972) Can fluorescent probes tell us anything about membranes? Biochem. Biophys. Acta. 265: 509–549

    CAS  Google Scholar 

  • Radda GK (1975) Fluorescent probes in membrane studies. Phil. Trans. R. Soc. London B 270: 539–549

    Article  CAS  Google Scholar 

  • Remedios CG, Miki M, Barden JA (1987) Fluorescence resonance energy transfer measurements of distances in actin and myosin. A critical evalution. J. of Muscle Research and Cell Motility 8: 97–117

    Article  Google Scholar 

  • Sahar E, Latt SA (1980) Energy Transfer and Binding Competitionbetween Dyes used to enhance Staining Differentiation in Metaphase Chromosomes. Chromosoma, Berlin 79: 1–28

    Article  CAS  Google Scholar 

  • Schiller PW The measurement of intramolecular distances by energy transfer in Chen RF, Edelhoch H (eds) (1975) Biochemical Fluorescence Concepts, Vol. 2 Marcel Dekker, New York pp. 285–304

    Google Scholar 

  • Shinitzky M, Dianoux A-C, Gitler C, Weber G (1971) Microviscosity and order in the hydrocarbon region of micelles and membranes determined with fluorescent probes. Synthetic micelles. Biochemistry 10: 2106–2113

    CAS  Google Scholar 

  • Stryer L (1960) Energy Transfer in proteins and polypeptides. Radiat. Res. Suppl. 2: 432–451

    Article  CAS  Google Scholar 

  • Stryer L, Haugland RP (1967) Energy Transfer. A spectroscopic ruler. Proc. Natl. Acad. Sci. U.S.A. 58: 719–726

    Article  PubMed  CAS  Google Scholar 

  • Stryer L (1978) Fluorescence energy transfer as a spectroscopic ruler. Ann. Rev. Biochem. 47: 819–846

    Article  PubMed  CAS  Google Scholar 

  • Stryer L, Thomas DD, Meares CF (1982) Diffusion-Enhanced Fluorescence Energy Transfer. Ann. Rev. Biophys. Bioeng. 11: 203–222

    Article  CAS  Google Scholar 

  • Stunitzky M (1973) Rate of non radiative energy transfer between identical molecules. Chem. Phys. Lett. 18: 247–249

    Article  Google Scholar 

  • Tasaki I, Warashina A, Pant H (1976) Studies of light emission, absorption and energy transfer in nerve membranes labelled with fluorescent probes. Biophys. Chem. 4: 1–13

    Article  PubMed  CAS  Google Scholar 

  • Thaer AA, Sernetz M (eds) (1973) Fluorescence Techniques in Cell Biology. Springer Verlag, Berlin

    Google Scholar 

  • Vaz WLC, Kaufmann K, Nieksch A (1977) Use of energy transfer to assay the association of proteins with lipid membranes. Anal. Biochem. 83: 85–393

    Article  Google Scholar 

  • Weber G (1952) Polarization of the fluorescence of macro-molecules. 2. Fluorescent conjugates of ovalbumin and bovine serum albumin. Biochem. J. 51: 155–167

    PubMed  CAS  Google Scholar 

  • Weber G (1973) Polarized fluorescence. In: Thaer AA, Sernetz M (eds) Fluorescence Techniques in Cell Biology. Springer Verlag, Berlin pp. 5–13

    Google Scholar 

  • Werner TC, Bunting JR, Cathou RE (1973) Proc. Natl. Acad. Sci. USA 69: 795–799

    Article  Google Scholar 

  • Wright K, Takahashi M (1977) Fluorescence energy transfer between heterologous active sites of affinity-labeled aspartokinase of Escherichia coli. Biochemistry 16: 1548–1554

    Article  PubMed  CAS  Google Scholar 

  • Zukin RS, Hartig PR, Koshland DE (1977) Use of a distant reporter group as evidence for a conformational change in a sensory receptor. Proc. Natl. Acad. Sci. U.S.A. 74: 1932–1936

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Eisert, W.G. (1993). Energy Transfer. In: Jacquemin-Sablon, A. (eds) Flow Cytometry. NATO ASI Series, vol 67. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84616-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84616-8_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84618-2

  • Online ISBN: 978-3-642-84616-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics