Skip to main content

What Caused the Glacial to Interglacial CO2 Change?

  • Conference paper
The Global Carbon Cycle

Part of the book series: NATO ASI Series ((ASII,volume 15))

Abstract

Scenarios put forward to explain the 80 µatm glacial to interglacial change in atmospheric CO2 content are evaluated. The conclusion is that no single mechanism is adequate. Rather, contributions from temperature, sea ice, biologic pumping, nutrient deepening, and CаCOз cycling must be called upon. The observation that the 13C/12C ratio for Antarctic foraminifera was 0.9±0.1‰ lower during glacial than during interglacial time constitutes a huge fly in the ointment for all scenarios proposed to date.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barnola JM, Raynaud D, Korotkevich YS, Lorius C (1987) Vostok ice core provides 160,000-year record of atmospheric CO2. Nature 329:408–414

    Article  Google Scholar 

  • Berger WH (1982) Increase of carbon dioxide in the atmosphere during deglaciation: the coral reef hypothesis. Naturwissenschaften 69:87–88

    Article  Google Scholar 

  • Boyle EA (1988) Vertical oceanic nutrient fractionation and glacial/interglacial CO2 cycles. Nature 331:55–56

    Article  Google Scholar 

  • Broecker WS (1982) Glacial to interglacial changes in ocean chemistry. Prog. Oceanog. 11:151–197

    Article  Google Scholar 

  • Broecker WS, Takahashi T, Takahashi T (1985) Sources and flow patterns of deep-ocean waters as deduced from potential temperature salinity and initial phosphate concentrations. J. Geophys. Res. 90:6925–6939

    Article  Google Scholar 

  • Broecker WS, Peng T-H (1986) Carbon cycle: 1985. Glacial to interglacial changes in the operation of the global carbon cycle. Radiocarbon 28:309–327

    Google Scholar 

  • Broecker WS, Peng T-H (1987a) The oceanic salt pump: does it contribute to the glacial-interglacial difference in atmospheric CO2 content? Global Biogeochemical Cycles 1:251–259

    Article  Google Scholar 

  • Broecker WS, Peng T-H (1987b) C/P ratios in marine detritus. Global Biogeochemical Cycles 1:155–161

    Article  Google Scholar 

  • Broecker WS, Peng T-H (1989) The cause of the glaical to interglacial atmospheric CO2 change: A polar alkalinity hypothesis. Global Biogeochemical Cycles 3:215–239

    Article  Google Scholar 

  • Broecker WS, Klas M, Clark E, Bonani G, Ivy S, and Wolfli W (1991) The influence of CaCO2 dissolution on core top radiocarbon ages for deep-sea sediments. Paleoceanography 6:593–608

    Article  Google Scholar 

  • Charles CD, Fairbanks RG (1990) Glacial to interglacial changes in the isotopic gradients of southern ocean surface water. In: Bleil U, Thiede J (eds) Geological History of the Polar Oceans: Arctic Versus Antarctic. Kluwer Academic Publishers, Netherlands, pp 519–538

    Google Scholar 

  • CLIMAP PROJECT MEMBERS (1981) Seasonal reconstruction of the Earth’s surface at the last glacial maximum. Geol. Soc. Amer., Map and Chart Series 36

    Google Scholar 

  • Craig H, Gordon LI (1965) Deuterium and oxygen-18 variations in the ocean and the marine atmosphere. In: Tongiorgi T (ed), Stable Isotope in Oceanographic Studies and Paleotemperatures. Consiglio Nazional delle Richerche Laboratorio de Geologia Nucleare, Pisa, Italy, pp 9–130

    Google Scholar 

  • Curry WB, Duplessy JC, Labeyrie LD, Shackleton NJ (1988) Changes in the distribution of δ13C of deep water ΣCO2 between the last glaciation and the Holocene, Paleoceanography 3:317–341

    Article  Google Scholar 

  • Duplessy JC, Shackleton NJ, Fairbanks RG, Labeyrie LD, Oppo D, Kallel N (1988) Deepwater source variations during the last climatic cycle and their impact on the global deepwater circulation. Paleoceanography 3:343–360

    Article  Google Scholar 

  • Farrell JW, Prell WL (1989) Climatic change and CаCO3 preservation: An 800,000 year bathymetric reconstruction from the central equatorial Pacific Ocean. Paleoceanography 4:447–466

    Article  Google Scholar 

  • Knox F, McElroy M (1984) Change in atmospheric CO2: Influence of the marine biota at high latitude. J. Geophys. Res. 89:4629–4637

    Article  Google Scholar 

  • Labeyrie LD, Duplessy JC, Blanc PL (1987) Variations in mode of formation and temperature of oceanic deep waters over the past 125,000 years. Nature 327:477–482

    Article  Google Scholar 

  • Neftel A, Oeschger H, Schwander J, Stauffer B, Zumbrunn R (1982) Ice core sample measurements give atmospheric CO2 content during the past 40,000 yr. Nature 295:220–223

    Article  Google Scholar 

  • Opdyke BN, Walker JCG (1991, in press) The return of the coral reef hypothesis: Glacial to interglacial partitioning of basin to shelf carbonate and its effect on Holocene atmospheric pCO2. Geology

    Google Scholar 

  • Sarmiento JL, Toggweiler R (1984) A new model for the role of the oceans in determining atmospheric pCO2. Nature 308:621–624

    Article  Google Scholar 

  • Shackleton NJ, Hall MA, Line J, Shuxi C (1983) Carbon isotope data in core V19–30 confirm reduced carbon dioxide concentration in the ice age atmosphere. Nature 306:319–322

    Article  Google Scholar 

  • Shackleton NJ (1987) Oxygen isotopes, ice volume and sea level. Quaternary Sci. Rev. 6:183–190

    Article  Google Scholar 

  • Siegenthaler U, Wenk T (1984) Rapid atmospheric CO2 variations and ocean circulation. Nature 308:624–626

    Article  Google Scholar 

  • Takahashi T, Broecker WS, Langer S (1985) Redfield ratio based on chemical data from isopycnal surfaces. J. Geophys. Res. 90:6907–6924

    Article  Google Scholar 

  • Volk T, Hoffert MI (1985) Ocean carbon pumps: Analysis of relative strengths and efficiencies in ocean-driven atmospheric CO2 changes. In: Sundquist ET, Broecker WS (eds) The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present. Geophysical Monograph 32, American Geophysical Union, Washington, D.C., pp 99–110

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Broecker, W.S., Peng, TH. (1993). What Caused the Glacial to Interglacial CO2 Change?. In: Heimann, M. (eds) The Global Carbon Cycle. NATO ASI Series, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84608-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84608-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84610-6

  • Online ISBN: 978-3-642-84608-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics