Skip to main content

Modelling the Marine Biota

  • Conference paper
The Global Carbon Cycle

Part of the book series: NATO ASI Series ((ASII,volume 15))

Abstract

Marine biota play an important role in the natural carbon cycle of the ocean. Biogenic particles are exported from the euphotic zone to the deep ocean and this ‘biological’ pump, in conjunction with the ‘solubility’ pump, maintains the vertical gradient of dissolved inorganic carbon (DIC). Model studies (Bacastow & Maier-Raimer, 1990; Shaffer, this volume) and analysis of GEOSECS data (Volk & Hoffert, 1985) suggest that the biological pump contributes between 60%-83% of the total DIC pump on a world-wide basis. If the marine biota were removed, the atmospheric pCO2 would increase from its present values of 335 ppmv to 460 ppmv (Shaffer, this volume). However, when modelling the oceanic uptake of anthropogenic CO2 it is generally assumed that the marine biota play no role in this process (Sarmiento et al., 1992). The reason for this assumption is that the high concentration of bicarbonate ions in seawater implies that marine plants should not be limited by CO2 (Fogg, 1975) and that, therefore, the anthropogenic increase in surface water DIC will not produce any increase in primary production. This situation is in contrast to the terrestrial biosphere where there is evidence for a CO2 fertilisation effect (Gifford, this volume).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alldredge AL, Silver MW (1988) Characteristics dynamics and significance of marine snow. Prog Oceanogr 20:41–82

    Article  Google Scholar 

  • Altabet MA (1989) Particulate new nitrogen fluxes in the Sargasso Sea. J Geophys Res 94:12771–12779

    Article  Google Scholar 

  • Andersen V, Nival P (1988) A pelagic ecosystem model simulating production and sedimentation of biogenic particles: role of salps and copepods. Mar Ecol Prog Ser 44:37–50

    Article  Google Scholar 

  • Andersen V, Nival P (1991) A model of the diel vertical migration of Zooplankton based on euphuasiids. J Mar Res 49:153–175

    Article  Google Scholar 

  • Anderson T (to be published) Modelling the influence of food C:N ratio and respiration on growth and excretion of marine plankton and bacteria. J Plank Res

    Google Scholar 

  • Angel MV (1984) Detrital organic fluxes through pelagic ecosystems. In: Fasham MJR (ed) Flows of energy and materials in marine ecosystems: theory and practice. Plenum Press New York & London, p 475

    Google Scholar 

  • Angel MV (1986) Vertical migrations in the oceanic realm: possible causes and probable effects. In: Rankin MA (ed) Migration: mechanisms and adaptive significance. Contr Mar Sci (Suppl) 24:45–70

    Google Scholar 

  • Angel MV (1988) Vertical profiles of pelagic standing crop in the vicinity of the Azores Front and their implications to deep ocean ecology. Prog Ocean 20:1–46

    Article  Google Scholar 

  • Atkinson CA (1987) A nonlinear programming approach to the analysis of perturbed marine ecosystems under model parameter uncertainty. Ecol Modell 35:1–28

    Article  Google Scholar 

  • Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil LA, Thingstad F (1983) The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10:257–263

    Article  Google Scholar 

  • Azam F, Hodson RE (1977) Size distribution and activity of marine heterotrophs. Limnol Oceanogr 22:492–501

    Article  Google Scholar 

  • Bacastow R, Maier-Reimer E (1990) Ocean-circulation model of the carbon cycle. Climate Dynamics 4:95–125

    Article  Google Scholar 

  • Bacastow R, Maier-Reimer E (1991) Dissolved organic carbon in modeling oceanic new production. Global Biogeochemical Cycles 5:71–85

    Article  Google Scholar 

  • Bé AWH, Foms JM, Roels OA (1971) Plankton abundance in the North Atlantic Ocean. In: Costlow JD (ed.) Fertility of the sea, vol 1. Gordon and Breach Science Publishers, p. 17

    Google Scholar 

  • Berger WH, Smetacek VS, Wefer G (1989) Ocean productivity and paleoproductivity-an overview. In: Berger WH, Smetacek VS, Wefer G (eds.) Productivity of the ocean: present and past. J Wiley & Sons Chichester, p 1

    Google Scholar 

  • Bjomsen PK (1986) Bacterioplankton growth yield in continuous seawater cultures. Mar Ecol Prog Ser 30:191–96

    Article  Google Scholar 

  • Brock TD (1981) Calculating solar radiation for ecological studies. Ecol Modell 14:1–19

    Article  Google Scholar 

  • Burkill PH, Edwards ES, John AWG, Sleigh MA (to be published) Microzooplankton and their herbivorous activity in the north eastern Atlantic Ocean. Deep-Sea Res

    Google Scholar 

  • Capriulo GM, Sherr EB, Sherr BF (1991) Trophic behaviour and related community feeding activities of heterotrophic marine protists. In: Reid PC, Turley CM, Burkill PH (eds) Protozoa and their role in marine processes. Springer-Verlag Berlin, p 217

    Google Scholar 

  • Carr MR (1986) Modelling the attenuation of broad band light down a water column. The Statistician 35:325–333

    Article  Google Scholar 

  • Chavez FP, Barber RT (1987) An estimate of new production in the equatorial Pacific. Deep-Sea Res 34:1229–1243

    Article  Google Scholar 

  • Clarke KR, Joint IR (1986) Methodology for estimating numbers of free-living and attached bacteria in estuarine water. Appl Env Microbiol 51:1110–1120

    Google Scholar 

  • Cole JJ, Pace ML, Findlay S (1988) Bacterial production in fresh and saltwater ecosystems: a cross-system overview. Mar Ecol Prog Ser 43:1–10

    Article  Google Scholar 

  • Cullen JJ (1990) On models of growth and photosynthesis in phytoplankton. Deep-Sea Res 37:667–683

    Article  Google Scholar 

  • Dortch Q (1990) The interaction between ammonium and nitrate uptake in phytoplankton. Mar Ecol Prog Ser 61:183–201

    Article  Google Scholar 

  • Dring MJ, Jewson DH (1982) What does 14C uptake by phytoplankton really measure? A theoretical modelling approach. Proc Roy Soc 214B:351–368

    Google Scholar 

  • Ducklow HW, Fasham MJR (1991) Bacteria in the greenhouse: modeling the role of oceanic plankton in the global carbon cycle. In: Mitchell R (ed) New concepts in enironmental microbiology. Wiley-Liss Inc. New York, p 1

    Google Scholar 

  • Ducklow HW, Purdie DA, Williams PJleB, Davies JM (1986) Bacterioplankton: a sink for carbon in a coastal marine plankton community. Science 232:865–867

    Article  Google Scholar 

  • Dugdale RC, Goering JJ (1967) Uptake of new and regenerated forms of nitrogen in primary production. Limnol Oceanogr 12:196–206

    Article  Google Scholar 

  • Eppley RW (1972) Temperature and phytoplankton growth in the sea. Fish Bull 70:1063–1085

    Google Scholar 

  • Eppley RW, Peterson BJ (1979) Particulate organic matter flux and planktonic new production in the deep ocean. Nature 282:677–680

    Article  Google Scholar 

  • Eppley RW, Renger EH, Harrison WG (1979) Nitrate and phytoplankton production in Southern California coastal waters. Limnol Oceanogr 24:483–494

    Article  Google Scholar 

  • Evans GT (1988) A framework for discussing seasonal succession and coexistence of phytoplankton species. Limnol Oceanogr 33:1037–1036

    Article  Google Scholar 

  • Evans GT, Parslow JS (1985) A model of annual plankton cycles. Biol Oceanogr 3:327–347

    Google Scholar 

  • Falkowski PG (ed) (1980) Primary productivity in the sea. Plenum Press New York

    Google Scholar 

  • Falkowski PG, Wirick CD (1981) A simulation model of the effects of vertical mixing on primary productivity. Mar Biol 65:69–75

    Article  Google Scholar 

  • Fasham MJR (1977) The application of some stochastic processes to the study of plankton patchiness. In: Steele JH (ed) Spatial pattern in plankton communities. Plenum Press New York and London, p 131

    Google Scholar 

  • Fasham MJR (1985) Flow analysis of materials in the marine euphotic zone. In: Ulanowicz RE, Platt T (eds) Ecosystem theory for biological oceanography. Can Bull Fish Aquat Sci 213:139–162

    Google Scholar 

  • Fasham MJR, Denman K, Brewer PG (1991) The Joint Global Ocean Flux Study: goals and objectives. In: Corell RW, Anderson PA (eds) Global Environmental Change. Springer-Verlag Berlin, p 246

    Google Scholar 

  • Fasham MJR, Ducklow HW, McKelvie SM (1990) A nitrogen-based model of plankton dynamics in the oceanic mixed layer. J Mar Res 48:591–639

    Google Scholar 

  • Fasham MJR, Holligan PM, Pugh PR (1983) The spatial and temporal development of the spring phytoplankton bloom in the Celtic Sea April 1979. Prog Oceanogr 12:87–145

    Article  Google Scholar 

  • Fasham MJR, Platt T (1985) Photosynthetic response of phytoplankton to light: a physiological model. Proc R Soc Lond B 219:355–370

    Article  Google Scholar 

  • Fenchel T, Blackburn TH (1979) Bacteria and mineral cycling. Academic Press New York

    Google Scholar 

  • Fogg GE (1975) Primary productivity. In: Riley JP, Skirrow J (eds) Chemical Coeanography vol 2. Academic Press London, p 385

    Google Scholar 

  • Fogg GE (1983) The ecological significance of extracellular products of phytoplankton photosynthesis. Botanica Marina 26:3–14

    Article  Google Scholar 

  • Fowler SW, Knauer GA (1986) Role of large particles in the transport of elements and organic compounds through the oceanic water column. Prog Ocean 16:147–194

    Article  Google Scholar 

  • Frost BW (1987) Grazing control of phytoplankton stock in the open subarctic Pacific Ocean: a model assessing the role of mesozooplankton particularly the large calanoid copepods Neocalanus spp. Mar Ecol Prog Ser 39:49–68

    Article  Google Scholar 

  • Gardner WD, Walsh ID (1990) Distribution of macroaggregates and fine-grained particles across a continental margin and their potential role in fluxes. Deep-Sea Res 37:401–411

    Article  Google Scholar 

  • Geider RJ, Platt T (1986) A mechanistic model of photadaptation in microalgae. Mar Ecol Prog Ser 30:85–92

    Article  Google Scholar 

  • Gifford R (1992) Implications of C02 effects on plants for the global carbon cycle. This volume

    Google Scholar 

  • Glover DM, Brewer PG (1988) Estimates of winter-time mixed layer nutrient concentrations in the North Atlantic. Deep-Sea Res 35:1525–1546

    Article  Google Scholar 

  • Goldman JC, Caron DA, Dennett MR (1987) Regulation of gross growth efficiency and ammonium regeneration in bacteria by substrate C:N ratio. Limnol Oceanogr 32:239–1252

    Article  Google Scholar 

  • Harris GP (1986) Phytoplankton ecology: structure, function and fluctuation. Chapman and Hall London

    Book  Google Scholar 

  • Harrison WG, Platt T, Lewis MR (1987) F-ratio and its relationship to ambient nitrate concentration in coastal waters. J Plank Res 9:235–248

    Article  Google Scholar 

  • Hofmann EE, Klinick JM, Paffenhofer G-A (1981) Concentrations and vertical fluxes of Zooplankton fecal pellets on a continental shelf. Mar Biol 61:327–335

    Article  Google Scholar 

  • Hofmann EE (1988) Plankton dynamics on the outer southeastern US continental shelf Part ΙII: A coupled physical-biological model. J mar res 9:919–946

    Article  Google Scholar 

  • Hofmann EE, Ambler JW (1988) Plankton dynamics on the outer southeastern US continental shelf Part II: a time-dependent model. J mar res 46:883–917

    Article  Google Scholar 

  • Hofmann EE, Pietrafesa LJ, Klinick JM, Atkinson LP (1980) A time-dependent model of nutrient distribution in continental shelf waters. Ecol Modell 10:193–214

    Article  Google Scholar 

  • Isemer HJ, Hasse L (1985) The Bunker climate atlas of the North Atlantic Ocean vol 1: Observations. Springer-Verlag Berlin

    Google Scholar 

  • Iwasa Y, Andreason V, Levin S (1987) Aggregation in model ecosystems I. Perfect aggregation, Ecol Model 37:287–302

    Article  Google Scholar 

  • Jamart BM, Winter DF, Banse K, Anderson GC, Lam RK (1977) A theoretical study of phytoplankton growth and nutrient distribution in the Pacific Ocean of the northwestern U S coast. Deep-Sea Res 24:753–773

    Article  Google Scholar 

  • Jamart BM, Winter DF, Banse K (1979) Sensitivity analysis of a mathematical model of phytoplankton growth and nutrient distribution in the Pacific Ocean off the northeastern US coast. J Plank Res 1:267–290

    Article  Google Scholar 

  • Jemigan RW, Tsokos IP (1980) A linear stochastic model for phytoplankton production in a marine ecosystem. Ecol Model 10:1–12

    Article  Google Scholar 

  • Jones R, Henderson EW (1986) The dynamics of nutrient regeneration and simulation studies of the nutrient cycle. J Conseil 43:216–236

    Article  Google Scholar 

  • Joos F, Sarmiento JL, Siegenthaler U (1991) Estimates of the effect of the Southern Ocean iron fertilisation on atmospheric C02 concentrations. Nature 349:772–775

    Article  Google Scholar 

  • Kiefer DA, Kremer JN (1981) Origins of vertical patterns of phytoplankton and nutrients in the temperate open ocean: a Stratigraphie hypothesis. Deep-Sea Res 28:1087–1106

    Article  Google Scholar 

  • Koike I, Hara S, Terauchi K, Kogure K (1990) Role of sub-micrometre particles in the ocean. Nature 345:242–244

    Article  Google Scholar 

  • Kremer JN (1983) Ecological implications of parameter uncertainty in stochastic simulation. Ecol Model 18:187–207

    Article  Google Scholar 

  • Kremer JN, Nixon SW (1977) A coastal marine ecosystem. Springer-Verlag New York

    Google Scholar 

  • Lancelot C, Billen G (1986) Carbon-nitrogen relationships in nutrient metabolism of coastal marine ecosystems. Adv Aquatic Microbiol 3:263–321

    Google Scholar 

  • Lederman TC, Tett P (1981) Problems in modelling the photosynthesislight relationship. Bot Mar 24:125–134

    Article  Google Scholar 

  • Levitus S (1982) Climatological atlas of the world ocean. NOAA Professional Paper 13, US Govt Printing Office Washington.

    Google Scholar 

  • Longhurst AR, Harrison WG (1988) Vertical nitrogen flux from the oceanic photic zone by diel migrant Zooplankton. Deep-Sea Res 35:881–889

    Article  Google Scholar 

  • Longhurst AR, Bedo A, Harrison WG, Head EJH, Sameoto DD (1990) Vertical flux of respiratory carbon by oceanic diel migrant biota. Deep-Sea Res 37:685–694

    Article  Google Scholar 

  • Longhurst AR, Bedo A, Harrison WG, Head EJH, Horne EP, Irwin B, Morales C (1991) NFLUX: a test of vertical nitrogen flux by diel migrant biota. Deep-Sea Res 36:1705–1719

    Article  Google Scholar 

  • Martin JH, Fitzwater SE (1988) Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic. Nature 331:341–343

    Article  Google Scholar 

  • McLaren LA (1963) Effects of temperature on the growth of Zooplankton and the adaptive value of vertical migration. J Fish Res Bd Can 20:685–727

    Article  Google Scholar 

  • Menzel DW, Ryther JH (1960) The annual cycle of primary production in the Sargasso Sea off Bermuda. Deep-Sea Res 6:351–367

    Google Scholar 

  • Menzel DW, Ryther JH (1961) Zooplankton in the Sargasso Sea off Bermuda and its relation to organic production. J Cons 26:250–258

    Article  Google Scholar 

  • Moloney CL, Bergh MO, Field JG, Newell RC (1986) The effect of sedimentation and microbial regeneration in a plankton community: a simulation investigation. J Plank Res 8:427–445

    Article  Google Scholar 

  • Morel A (1988) Optical modeling of the upper ocean in relation to its biogenous matter content (case I waters). J Geophys Res 93 (C9): 10749–10768

    Article  Google Scholar 

  • Morel A, Berthon JF (1989) Surface pigments algal biomass and potential production of the euphotic zone: realtionships reinvestigated in view of remote sensing applications. Limnol Oceanogr 34:1547–1564

    Article  Google Scholar 

  • Murray JW, Downs JN, Strom S, Wei C-L, Jannasch HW (1989) Nutrient assimilation export production and 234Th scavenging in the eastern equatorial Pacific. Deep-Sea Res 36:1471–1489

    Article  Google Scholar 

  • Najjar RM (1990) Simulations of the phosphorus and oxygen cycles in the world ocean using a general circulation model. PhD dissertation Princeton Univ. Princeton New Jersey

    Google Scholar 

  • Newell RC (1984) The biological role of detritus in the marine environment In: Fasham MJR (ed) Flows of energy and materials in marine ecosystems: theory and practice. Plenum Press New York & London, p 317

    Google Scholar 

  • Newell RC, Linley EAS (1984) Significance of microheterotrophs in the decomposition of phytoplankton: estimation of carbon and nitrogen flow based on the biomass of plankton communities. Mar Ecol Prog Ser 16:105–119

    Article  Google Scholar 

  • Nisbet RM, Gurney WSC (1982) Modelling fluctuating populations. J Wiley & Sons Chichester

    Google Scholar 

  • Oberhuber JM (1988) An atlas based on the ‘COADS’ data set: the budgets of heat buoyancy and turbulent kinetic energy at the surface of the global ocean. Max-Panck-Institut für Meteorologie Report No 15 Hamburg

    Google Scholar 

  • O’Neill RV, Angelis DL, Pastor JJ, Jackson BJ, Post WM (1989) Multiple nutrient limitations in ecological models. Ecol Modell 46:147–163

    Article  Google Scholar 

  • Pace ML, Knauer GA, Karl DM, Martin JH (1987) Particulate matter fluxes in the ocean: a predictive model. Nature 325:803–804

    Article  Google Scholar 

  • Pace ML, Glasser JE, Pomeroy LR (1984) A simulation analysis of continental shelf food webs. Mar Biol 82:47–63

    Article  Google Scholar 

  • Paffenhofer G-A, Knowles SC (1979) Ecological implications of fecal pellet size production and consumption by copepods. J Mar Res 37:35–49

    Google Scholar 

  • Parsons TP, Kessler TA (1987) An ecosystem model for the assessment of plankton production in relation to the survival of young fish. J Plank Res 9:125–137

    Article  Google Scholar 

  • Paulson CA, Simpson JJ (1977) Irradiance measurements in the upper ocean. J Phys Oceanogr 7:952–956

    Article  Google Scholar 

  • Peng T-H, Broecker WS (1991) Dynamical limitations on the Anarctic iron fertilization. Nature 349:227–229

    Article  Google Scholar 

  • Peng T-H, Takahashi T, Broecker WS, Olafsson J (1987) Seasonal variability of carbon dioxide nutrients and oxygen in the northern North Atlantic surface water: observations and a model. Tellus 39B:439–458

    Article  Google Scholar 

  • Peters RH (1983) The ecological implications of body size. Cambridge University Press Cambridge

    Google Scholar 

  • Platt T, Denman KL, Jassby AD (1977) Modeling the productivity of phytoplankton In: Goldberg ED, McCave IN, O’Brien JJ, Steele JH (eds) The Sea vol 6. Wiley-Interscience New York, p 807

    Google Scholar 

  • Platt T, Gallegos CL, Harrison WG (1980) Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J Mar Res 38:687–701

    Google Scholar 

  • Platt T, Harrison WG (1985) Biogenic fluxes of carbon and oxygen in the ocean. Nature 318:55–58

    Article  Google Scholar 

  • Platt T, Mann KH, Ulanowicz RE (1981) Mathematical models in biological oceanography. UNESCO Press Paris

    Google Scholar 

  • Platt T, Sathyendranth S (1988) Ocean primary production: Estimation by remote sensing at local and regional scales. Science 241:1613–1620

    Article  Google Scholar 

  • Platt T, Sathyendranath S, Ravindran P (1990) Primary production by phytoplankton: analytic solutions for daily rates per unit area of water surface. Proc R Soc Lond B 241:101–111

    Article  Google Scholar 

  • Pomeroy LR (1974) The ocean’s food web, a changing paradigm. Bioscience 24:499–504

    Article  Google Scholar 

  • Poulet SA (1983) Factors controlling utilization of non-algal diets by particle-grazing copepods: a review. Oceanologica Acta 6:221–234

    Google Scholar 

  • Riley GA, Stommel H, Bumpus DF (1949) Quantitative ecology of the plankton of the western North Atlantic. Bull Bing Ocean Coll 12(3): 1–169

    Google Scholar 

  • Rosenzweig ML (1971) Paradox of enrichment. Science 171:385–387

    Article  Google Scholar 

  • Sakshaug E, Kiefer DA, Andresen K (1989) A steady state description of growth and light absorption in the marine planktonic diatom Skeletonema costatum. Limnol Oceanogr 34:198–205

    Article  Google Scholar 

  • Sarmiento JL, Toggweiler JR, Najjar R (1988) Ocean carbon cycle dynamics and atmospheric pCO2. Phil Trans Roy Soc A:325 3–21

    Article  Google Scholar 

  • Sarmiento J L, Fasham MJR, Slater R, Toggweiler JR, Ducklow HW (1992) The role of biology in the chemistry of CO2 on the ocean. In: Farrell M (ed) Chemistry of the greenhouse effect. Lewis Publ. In press

    Google Scholar 

  • Sarmiento JL, Orr JC, Siegenthaler U (1992) A perturbation simulation of CO2 uptake in an ocean general circulation model. J Geophys Res In press

    Google Scholar 

  • Sathyendrananth S, Platt T (1988) The spectral irradiance field at the surface and in the interior of the ocean: a model for applications in oceanography and remote sensing. J Geophys Res 93:9270–9280

    Article  Google Scholar 

  • Schell DM (1974) Uptake and regeneration of free amino acids in marine waters of Southeast Alaska. Limnol Oceanogr 19:260–270

    Article  Google Scholar 

  • Shaffer G (1992) Marine Production. This volume

    Google Scholar 

  • Sharp JH (1977) Excretion of organic matter: do healthy cells do it? Limnol Oceanogr 22:381–399

    Article  Google Scholar 

  • Sherr EB, Sherr BF, Albright LJ (1987) Bacteria: link or sink? Science 235:88–89

    Article  Google Scholar 

  • Sherr EB, Sherr BF (1988) Role of microbes in pelagic food webs: a revised concept. Limnol Oceanogr 33:1225–1227

    Article  Google Scholar 

  • Smith SD, Dobson FW (1984) The heat budget at Ocean Weather Ship Bravo. Atmos-Ocean 22:1–22

    Article  Google Scholar 

  • Steele JH (1958) Plant production in the northern North Sea. Scottish Home Department Marine Research Report No 7 HMSO Edinburgh

    Google Scholar 

  • Steele JH (1974) The structure of marine ecosystems. Blackwell Scientific Publications Oxford

    Google Scholar 

  • Steele JH, Henderson EW (1992) The role of predation in plankton models. J Plank Res 14:157–172

    Article  Google Scholar 

  • Steele JH, Frost BW (1977) The structure of plankton communities. Phil Trans R Soc B 280:485–534

    Article  Google Scholar 

  • Stouffer RJ, Manabe S, Bryan K (1989) Interhemispheric asymmetry in climate response to a gradual increase of atmospheric CO2. Nature 342:660–662

    Article  Google Scholar 

  • Susuki Y (1992) Dynamic cycle of dissolved organic carbon and marine productivity. This volume

    Google Scholar 

  • Suttle CA, Chan AM, Cottrell MT (1991a) Infection of phytoplankton by viruses and reduction of primary productivity. Nature 347:467–469

    Article  Google Scholar 

  • Suttle CA, Chan AM, Fuhrman JA (1991b) Dissolved free amino acids in the Sargasso Sea: uptake and respiration rates, turnover times, and concentrations. Mar Ecol Prog Ser 70:189–199

    Article  Google Scholar 

  • Taghon GL, Jumars PJ (1984) Variable ingestion rate and its role in optimal foraging behaviour of marine deposit feeders. Ecology 65:549–558

    Article  Google Scholar 

  • Taylor AH, Watson AJ, Ainsworth M, Robertson JE, Turner DR (1991) A modelling investigation of the role of phytoplankton in the balance of carbon at the surface of the North Atlantic. Global Biogeochemical Cycles 5:151–171

    Article  Google Scholar 

  • Tett P, Edwards A, Jones K (1986) A model for the growth of shelf-sea phytoplankton in summer. Est Coast Shelf Sci 23:641–672

    Article  Google Scholar 

  • Vinogradov ME, Menshutkin VV, Shushkina EA (1972) On Mathematical simulation of a pelagic ecosystem in tropical waters of the ocean. Mar Biol 16:261–268

    Article  Google Scholar 

  • Volk T, Hoffert MI (1985) Ocean carbon pumps: analysis of relative strengths and efficiencies in ocean-driven atmospheric CO2 changes. In: Sundquist ET, Broecker WS (eds) The carbon cycle and atmospheric CO2: Natural variations archean to present. American Geophysical Union Washington DC. p 99

    Chapter  Google Scholar 

  • Walsh JJ (1975) A spatial simulation model of the Peru upwelling ecosystem. Deep-Sea Res 22:201–236

    Google Scholar 

  • Walsh JJ (1983) Death in the Sea: Enigmatic phytoplankton losses. Prog Oceanography 12:1–86

    Article  Google Scholar 

  • Walsh JJ (1988) On the nature of continental shelves. Academic Press San Diego

    Google Scholar 

  • Walsh JJ, Dugdale RC (1972) Nutrient submodels and simulation models of phytoplankton production in the sea. In: Kramer J, Allen H (eds) Nutrients in natural waters. JWiley & Sons New York, p 171

    Google Scholar 

  • Wheeler PA, Kokkinakis SA (1990) Ammonium recycling limits nitrate use in the oceanic subarctic Pacific. Limnol Oceanogr 35:267–1278

    Article  Google Scholar 

  • Wiegert RG (1979) Population models: experimental tools for the analysis of ecosystems. In: Horn DJ, Mitchell R, Stairs GR (eds) Proceedings of colloquium on analysis of ecosystems. Ohio State University Press, p 239

    Google Scholar 

  • Williams R (1988) Spatial heterogeneity and niche differentiation in oceanic Zooplankton. In: Boxshall GA, Schminke HK (eds) Biology of Copepods. Hydrobiologia 167/168:151–159

    Chapter  Google Scholar 

  • Williams R, Robinson GA (1973) Primary production at Ocean Weather Ship India (59° 00’N, 19° 00’W) in the North Atlantic. Bull Mar Ecol 8:115–121

    Google Scholar 

  • Woods JD, Onken R (1982) Diurnal variation and primary production in the ocean-preliminary results of a Lagrangian ensemble model. J Plank Res 4:735–756

    Article  Google Scholar 

  • Wroblewski J (1975) The verically migrating deep scattering layer-its possible role in the creation of small scale phytoplankton patchiness in the ocean. In: Anderson NR, Zahuranec BJ (eds) Oceanic sound scattering prediction. Plenum Press New York, p 817

    Google Scholar 

  • Wroblewski J (1977) A model of phytoplankton plume formation during variable Oregon upwelling. J Mar Res 35:357–394

    Google Scholar 

  • Wroblewski J (1980) A simulation of the distribution of Acartia clausii during Oregon upwelling August 1973. J Plank Res 2:43–68

    Article  Google Scholar 

  • Wolf KU, Woods JD (1988) Lagrangian simulation of primary production in the physical environment-the deep chlorophyll maximum and nutricline In: Rothschild BJ (ed) Towards a theory of biological-physical interaction in the world ocean. Kluwer Dordrecht, p 51

    Google Scholar 

  • Wulff F, Field JG, Mann KH (eds) (1989) Network analysis in marine ecology. Coastal and Estuarine Studies vol 32 Springer-Verlag

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fasham, M.J.R. (1993). Modelling the Marine Biota. In: Heimann, M. (eds) The Global Carbon Cycle. NATO ASI Series, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84608-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84608-3_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84610-6

  • Online ISBN: 978-3-642-84608-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics