Skip to main content

Methane Sinks Distribution

  • Conference paper

Part of the NATO ASI Series book series (ASII,volume 13)

Abstract

At present the amount of methane removed from the atmosphere each year is about 500 Tg/yr or more than 90% of that released into the atmosphere each year. Most of the methane is removed by reacting with tropospheric OH radicals; lesser amounts are removed by soils and stratospheric oxidation by OH, O(1D), and minor reactions. This chapter is on the removal rate of CH4 and its variability in space and time.

Keywords

  • Removal Rate
  • Middle Atmosphere
  • Destruction Rate
  • Atmospheric Methane
  • Methane Uptake

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-84605-2_9
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-84605-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bartlett, K.B., R.C. Harriss. 1993. Review and assessment of methane emissions from wetlands. Chemosphere, 26: 261–320.

    CrossRef  CAS  Google Scholar 

  • Brasseur, G., M.H. Hitchman, S. Walters, M. Dymek, E. Falise, M. Pirre. 1990. An interactive chemical dynamical radiative two-dimensional model of the middle atmosphere. J. Geophys. Res., 95 (D5):5, 639–5, 655.

    CrossRef  Google Scholar 

  • Bush, Y.A., A.L. Schmeltekopf, F.C. Fehsenfeld, D.L. Albritton, J.R. McAfee, P.D. Goldan, E.E. Ferguson. 1978. Stratospheric measurements of methane at several latitudes. Geophys. Res. Lett., 5:, 1027–1, 029.

    CrossRef  CAS  Google Scholar 

  • Crutzen, P.J., U. Schmailzl. 1983. Chemical budgets of the stratosphere. Planet. Space Sci., 31 (9):1, 009–1, 032.

    CrossRef  CAS  Google Scholar 

  • DeMore, W.B., S.P. Sander, C.J. Howard, A.R. Ravishankara, D.M. Golden, C.E. Kolb, R.F. Hampson, M.J. Kurylo, M.J. Molina. 1992. Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling. NASA Evaluation No. 10.

    Google Scholar 

  • Ehhalt, D.H., L.E. Heidt, E.A. Martell. 1972. The concentrations of atmospheric methane between 44 and 62 kilometers altitude. J. Geophys. Res., 77: 2, 1932, 196.

    Google Scholar 

  • Fabian, P., R. Borchers, G. Flentje, W.A. Matthews, W. Seiler, H. Giehl, K. Bunse, F. Müller, U. Schmidt, A. Volz, A. Khedim, F.J. Johnen. 1981. The vertical distribution of stable trace gases at mid-latitudes. J. Geophys. Res., 86 (C6):5, 179–5, 184.

    CrossRef  CAS  Google Scholar 

  • Fung, I., J. John, J. Lerner, E. Matthews, M. Prather, L.P. Steele, P.J. Fraser. 1991. Three-dimensional model synthesis of the global methane cycle. J. Geophys. Res., 96 (D7):13, 033–13, 065.

    CrossRef  CAS  Google Scholar 

  • Gunson, M.R., C.B. Farmer, R.H. Norton, R. Zander, C.P. Rinsland, J.H. Shaw, B.-C. Gao. 1990. Measurements of CH4, N2O, CO, H2O, and 03 in the middle atmosphere by the Atmospheric Trace Molecule Spectroscopy

    Google Scholar 

  • Experiment on Spacelab 3. J. Geophys. Res., 95 (D9):13,867–13,882.

    Google Scholar 

  • Hahn, C.J., S.G. Warren, J. London, R.L. Jenne, R.M. Chervin. 1987. Climatological Data for Clouds over the Globe from Surface Observations. Report NDP-026, Carbon Dioxide Information Center, Oak Ridge, TN.

    Google Scholar 

  • Jones, R.L., J.A. Pyle. 1984. Observations of CH4 and N2O by the NIMBUS 7 SAMS: a comparison with in situ data and two-dimensional numerical model calculations. J. Geophys. Res., 89 (D4):5, 263–5, 279.

    CrossRef  Google Scholar 

  • Khalil, M.A.K., R.A. Rasmussen. 1983. Sources, sinks, and seasonal cycles of atmospheric methane. J. Geophys. Res., 88 (C9):5, 131–5, 144.

    CrossRef  CAS  Google Scholar 

  • Khalil, M.A.K., R.A. Rasmussen. 1985. Causes of increasing atmospheric methane: depletion of hydroxyl radicals and the rise of emissions. Atmos. Environ., 19:397–407.

    CrossRef  CAS  Google Scholar 

  • Khalil, M.A.K., R.A. Rasmussen. 1990. Atmospheric methane: recent global trends. Environ. Sci. Technol., 24: 549–553.

    CrossRef  CAS  Google Scholar 

  • Khalil, M.A.K., R.A. Rasmussen. 1992. Forest hydrocarbon emissions: relationships between fluxes and ambient concentrations. J. Air & Waste Manage. Assoc., 42: 810–813.

    CAS  Google Scholar 

  • Khalil, M.A.K., R.A. Rasmussen. 1993. Decreasing trend of methane: unpredictability of future concentrations. Chemosphere, 26: 803–814.

    CrossRef  CAS  Google Scholar 

  • Lelieveld, J., P.J. Crutzen, C. Brühl. 1993. Climate effects of atmospheric methane. Chemosphere, 26: 739–768.

    CrossRef  CAS  Google Scholar 

  • Levine, J.S., C.P. Rinsland, G.M. Tennille. 1985. The photochemistry of methane and carbon monoxide in the troposphere in 1950 and 1985. Nature, 318: 254–257.

    CrossRef  CAS  Google Scholar 

  • Lu, Y. 1993. Model calculations of radiative transfer and tropospheric chemistry. Ph.D. dissertation, Oregon Graduate Institute, Beaverton, OR.

    Google Scholar 

  • Lu, Y., M.A.K. Khalil. 1991. Tropospheric OH: model calculations of spatial, temporal, and secular variations. Chemosphere, 23: 397–444.

    CrossRef  CAS  Google Scholar 

  • Lu, Y., M.A.K. Khalil. 1992. Model calculation of night-time atmospheric OH. Tellus, 44B:106–113.

    CrossRef  Google Scholar 

  • Madronich, S., C. Granier. 1992. Impact of recent total ozone changes on tropospheric ozone photodissociation, hydroxyl radicals and methane trends. Geophys. Res. Lett., 19: 465–467.

    CrossRef  CAS  Google Scholar 

  • Matthews, E. 1983. Global vegetation and land use: new high-resolution data bases for climate studies. J. Climate Appl. Met., 22: 474–487.

    CrossRef  Google Scholar 

  • Matthews, E. 1984. Vegetation, land-use and seasonal albedo data sets: documentation of archived data tape. NASA Technical Memorandum 86107, Goddard Space Flight Center, New York, U.S.A.

    Google Scholar 

  • NOAA/CMDL (National Oceanic and Atmospheric Administration, Climate Monitoring and Diagnostics Laboratory Flask Sampling Program). 1990. In: Trends ‘80, A Compendium of Data on Global Change (T.A. Boden, P. Kanciruk, and M.P. Farrell, eds.), 148–189. Carbon Dioxide Information Analysis Center, Oak Ridge, TN, USA, ORNLJCDIAC-36.

    Google Scholar 

  • Ojima, D.S., D.W. Valentine, A.R. Mosier, W.J. Parton, D.S. Schimel. 1993. Effect of land use change on methane oxidation in temperate forest and grassland soils. Chemosphere, 26 (1–4): 675–685.

    CrossRef  CAS  Google Scholar 

  • Pinto, J., M.A.K. Khalil. 1991. The stability of tropospheric OH during ice ages, inter-glacial epochs and modern times. Tellus, 43B: 347–352.

    CrossRef  Google Scholar 

  • Prather, M., C.M. Spivakovsky. 1990. Tropospheric OH and the lifetimes of hydrochlorofluorocarbons. J. Geophys. Res., 95 (D11):18, 723–18, 729.

    CrossRef  Google Scholar 

  • Rasmussen, R.A., M.A.K. Khalil. 1986. Atmospheric trace gases: trends and distributions over the last decade. Science, 232: 1623–1624.

    PubMed  CrossRef  CAS  Google Scholar 

  • Schmidt, U., A. Khedim, D. Knapsa, G. Kulessa, F.J. Johnen. 1984. Stratospheric trace gas distributions observed in different seasons. Adv. Space Res., 4 (4): 131–134.

    CrossRef  CAS  Google Scholar 

  • Schmidt, U., G. Kulessa, E. Klein, E.-P. Röth, P. Fabian, and R. Borchers. 1987. Intercomparison of balloon-borne cryogenic whole air samplers during the MAP/GLOBUS 1983 campaign. Planet. Space Sci., 35: 647–656.

    CrossRef  CAS  Google Scholar 

  • Spivakovsky, C.M., R. Yevich, J.A. Logan, S.C. Wofsy, M.B. McElroy, M.J. Prather. 1990. Tropospheric OH in a three-dimensional chemical tracer model: an assessment based on observations of CH3CC13. J. Geophys. Res., 95 (D11):18, 441–18, 471.

    CrossRef  CAS  Google Scholar 

  • Steele, L.P., P.J. Fraser, R.A. Rasmussen, M.A.K. Khalil, T.J. Conway, A.J. Crawford, R.H. Gammon, K.A. Masarie, K.W. Thoning. 1987. The global distribution of methane in the troposphere. J. Atmos. Chem., 5: 125–171.

    CrossRef  CAS  Google Scholar 

  • Steudler, P.A., R.D. Bowden, J.M. Melilo, J.D. Aber. 1989. Influence of nitrogen fertilization on methane uptake in temperate forest soils. Nature, 341: 314–316.

    CrossRef  Google Scholar 

  • Taylor, F.W. A. Dudhia, C.D. Rodgers. 1989. Proposed reference models for nitrous oxide and methane in the middle atmosphere. In: Handbook for MAP, Vol. 31. (G.M. Keating, ed.), 67–79.

    Google Scholar 

  • Thompson, A.M., R.J. Cicerone. 1986. Possible perturbations to atmospheric CO, CH4, and OH. J. Geophys. Res., 91 (D10):10, 853–10, 864.

    CrossRef  CAS  Google Scholar 

  • Thompson, A.M. 1992. The oxidizing capacity of the Earth’s atmosphere: probable past and future changes. Science, 256:1, 157–1, 165.

    Google Scholar 

  • Vaghjiani, G.L., A.R. Ravishankara. 1991. New measurement of the rate coefficient for the reaction of OH with methane. Nature, 350: 406–408.

    CrossRef  CAS  Google Scholar 

  • Warneck, P. 1988. Chemistry of the Natural Atmosphere. Vol. 41, International Geophysics Series, Academic Press, Inc., San Diego, CA, USA.

    CrossRef  Google Scholar 

  • Weisenstein, D.K., M.K.W. Ko, N.-D. Sze. 1992. The chlorine budget of the present-day atmosphere: a modeling study. J. Geophys. Res., 97 (D2):2, 547–2, 559.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Khalil, M.A.K., Shearer, M.J., Rasmussen, R.A. (1993). Methane Sinks Distribution. In: Khalil, M.A.K. (eds) Atmospheric Methane: Sources, Sinks, and Role in Global Change. NATO ASI Series, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84605-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84605-2_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84607-6

  • Online ISBN: 978-3-642-84605-2

  • eBook Packages: Springer Book Archive